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Appendix

This appendix contains more information about our data set and describes our estima-
tion methods. Details about our data set appear in section A.1. Estimates of the contempo-
raneous correlation of the first differences of the current account, AC'A;, and investment Al
for the rest of the G—7 economies (i.e., France, Germany, Italy, Japan, the U.K., and the
U.S.) are found in section A.2. Section A.3 discusses reduced-form VAR (RFVAR) estima-
tion procedures and results for the entire G—7. Unit root tests and the results of these tests
are furnished in section A.4. Section A.5 outlines the way in which we estimate the structural
VARs (SVARs) of section 4 of the paper. The relationship between the short run and long
run responses of the current account to investment and common world shocks is discussed
for the remainder of the G—7 in section A.6. The appendix finishes with section A.7 that
provides estimates of the relevant SVAR coefficients, forecast error variance decompositions
(FEVDs), and graphical evidence for the remainder of the G—7.

A.1 Data

The paper uses quarterly data that spans the period 1973.1—1995.4. All of our estimates
are based on the 1975.1 — 1995.4 sample. We require data earlier than 1975.1 for lags when
computing ADF regressions and estimating VARs. Our definition of investment equals the
sum of gross capital formation and the change in stocks (i.e. inventories) with one exception.
The U.S. investment series includes gross capital formation of the government. This definition
of investment is the same one Glick and Rogoff (1995) use. The source of the quarterly gross
capital formation series is Datastream. In Datastream, this data appears in billions of
constant local currency units and is seasonally adjusted at annual rates. Quarterly data for
the change in stocks for the G—7 and the U.S. gross capital formation of the government
series are found in the IFS data bank. The IFS provides this data in current local currency
units, seasonally adjusted, at annual rates. We convert this nominal data to real data using
the GDP price deflators of the G—7. We obtain the GDP price deflators from Datastream.
Subsequent to making an adjustment to annual rates where appropriate, this completes the
task of creating the investment series.

Datastream reports quarterly current account data in millions of current U.S. dollars
for the G—7 with the exception of the current account series for Canada, Japan, and the
U.K. In Datastream, the current account series for Japan appears at the monthly frequency
in millions of U.S. dollars. We temporally aggregate the monthly data to form a quarterly
series. The current account series for Canada and the U.K. are provided in millions of
current local currency units. All of the current account data in Datastream are seasonally
adjusted with the exception of the series for France and Italy. We apply the X—11 filter to
seasonally adjust these series. To convert the current account series for France, Germany;,
Italy, and Japan to millions of constant local currency units, we apply the appropriate U.S.
dollar/local currency exchange rate. The quarterly exchange rate data we employ is from
the IFS and has been generously provided by Mick Devereux. Next, we use GDP deflators
to create quarterly current account series in millions of constant local currency units. The
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final step produces current account series for the G—7 in billions of constant local currency
units at annual rates.

Figures A1 and A2 contain time plots of the level of investment, I;, and the level of
the current account, C'A;, for the G—7 economies in alphabetical order. The most striking
aspect of this data is the observed inverse relationship between I; and the C'A;. However,
no structural interpretation can be given to this observation.

A.2  Reduced Form Univariate Regressions

At the beginning of section 3 of the paper, we present evidence that the contemporaneous
correlation of ACA; and Al; for Canada matches estimates reported elsewhere. In this
section, we present evidence that our entire G—7 data set produces similar estimates of the
slope coefficient of the regression

AOAt = bo + blAIt + v

Among others, Glick and Rogoff (1995) note that much of the literature that studies the
degree of international capital mobility examines the slope coefficient of this regression. Since
Glick and Rogoff report estimates of b; that are less than zero, the estimates make dubious
the Feldstein and Horioka (1980) story of autarkic national capital markets. However, at
face value the Glick and Rogoff estimates cannot be taken as evidence of perfect capital
mobility internationally because these estimates of b; are less negative than negative one.

The upper half of table A1 reproduces Glick and Rogoff’s ordinary least squares (OLS)
estimates. Our results appear in the bottom half of the table. The sample period for our
regression begins with 1975.1 and ends at 1995.4, while the Glick-Rogoff estimates are based
on annual data from 1975 to 1990.2! For our estimates of b;, we provide both OLS and
Newey-West (1994) standard errors. Our estimates of b; are all negative with an average
estimate of —0.33. The average Glick-Rogoff estimate is about —0.39. With the exception of
Germany, all of our estimates of b; are smaller (in absolute value) than those Glick and Rogoff
report. All of our estimates of b; possess t—ratios greater than two in absolute value.*?

Thus, our estimates of the reduced form regressions indicate that the correlation between
ACA; and Al in our data set is similar to that found by other researchers. To reiterate our
discussion just before section 3.1 of the paper, no structural interpretation can be given to
these estimates without an identification scheme.

A.3  Reduced-Form VAR Estimation

The results of estimating the reduced form VAR of ACA; and Al; appear in tables
A2.1 — 2. For each G—7 member, we compute OLS estimates of the fourth-order VAR

A-1Estimates for the 1975:1—1990:4 sample are qualitatively similar to those for the 1975:1—1995:4 sample.

A-2The major di®erence between our estimates and those of Glick and Rogo® is the R? and Durbin-Watson
(D—W) statistics. For six of the seven regressions, the value of R? we report is smaller than those in the top
panel of table Al. On the other hand, the Glick-Rogo® D—W statistics are smaller than ours. Most likely,
the source of these di®erences is temporal aggregation.
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(A3.1) AL = Aarar(L)ALy 4+ Aaraca(L)ACAi1 4+ earg,

and

(A3.2) ACA, = Apcanar(L)ALy + Apxcanca(L)ACA, 1 + eacaq

We estimate the reduced form VAR of (A3.1) and (A3.2) by ordinary least squares (OLS).
These results appear in table A2.1. The Granger-causality tests we present in table A2.1
follow the advice of Hamilton (1994) and construct a test statistic that asymptotically pos-
sesses the y? distribution with four degrees of freedom. To compute the forecast errors and
shocks to the stochastic trends that appear in table A2.2, we estimate a slightly altered
reduced form VAR. In this instance, we write equations (A3.1) and (A3.2) as

(A3.3) AL, = Aarar(DAL +  Aarar(L)A%L

+ Aaraca(DACA, .y + Aaraca(L)A’CA 1 + ears,

and

(A34) ACAt — AACA,AI(l)AIt—l ‘I— AACA7A](L)A2Lg_1

+ Apcanca(V)ACA 1 + Apcanca(L)A’CA 1 + eacan

where the lag operators are of order p — 1. Standard deviations of the forecast errors
and their correlations are calculated from the OLS residuals of the regressions (A3.3) and
(A3.4) for all of the G—7 economies. To generate the standard deviations of the stochastic
trends and their correlation for the G—7, we combine the OLS estimates of the coefficients
AAI, ACA(1)7 AAL A](l), AACA, A](l), and AACA, ACA(l) with the covariance matrix of the
reduced form OLS residuals of the regressions (A3.3) and (A3.4). We follow King and Wat-
son (1997) and compute the standard errors of the stochastic trends and their correlation by
the delta method.

In table A2.1, we report sums of the estimated coefficients of equations (A3.1) and
(A3.2), their standard errors, LM tests, and Granger-causality tests. Although there are
some noticeable patterns across the G—7 in the signs of these sums of coefficients, only those
for Japan and the U.K. have a t—ratio greater than two. For Japan, the coefficient sums
with a t—ratio greater than two are the autoregressive parameters of equations (A3.1) and
(A3.2). For the U.K., the coefficient sums with t—ratios greater than two (in absolute terms)
are in equation (A3.2), the ACA; regression.

Results of the LM and Granger-causality tests produce a similar picture. The LM test
computes the statistic T x R? to provide information about the hypothesis that all of the
slope coefficients of either equation (A3.1) or equation (A3.2) are jointly equal to zero. In this
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case, the test statistic is asymptotically distributed y? with eight degrees of freedom. Of the
14 regressions, only four regressions, the Al regression for Japan and the AC'A; regressions
for France, the U.K. and the U.S., reject the hypothesis at the five percent significance level.
Likewise, the tests for Granger-causality suggest that AC' A possesses no forecasting power
for AI across the G—7. On the other hand, using equation (A3.2) to test the hypothesis
that Aaca, ar(j) = 0, 7 = 1, ..., 4, yields evidence that is a bit more mixed. In this
case, Al possesses forecasting power for ACA for France, the U.K., and the U.S. at the
five percent significance level or better. These Granger-causality tests lend some support
for the notion that lags of A, do not matter for ACA;, as implied by the intertemporal,
small open economy model. There exists stronger evidence that lags of AC'A; do not predict
movements in A;.A3 Taken together with the estimates of the coefficient sums, the results
of the LM tests and the Granger-causality tests appear to support the inference that, except
for Japan, Al is to a first approximation white noise, but that AC'A; is white noise for
Canada, Germany, and Italy, at least, in the context of the REVAR of (A3.1) and (A3.2).

The top panel of table 2.2 contains summary statistics of the one-step ahead forecast
errors. Except for the U.K., the standard deviation of the innovation of the AI; regression
is greater than that for the ACA; regression for all G—7 economies. In addition, all of
the estimated standard deviations possess t—ratios greater than two. As expected, the con-
temporaneous correlation between the innovations of Al and AC' A; regressions is negative.
Aside from the U.K., the absolute value of the t—ratios of these correlations is less than two.
At short horizons, news about unrestricted forecasts of Al; and ACA; are orthogonal.

Estimates of the stochastic trends appear in the bottom panel of table 2.2. For the
entire G—7, the standard deviation of the permanent component of the innovation of the
Al regression is greater than the same statistic for the AC'A; regression. Among this set of
standard deviations, the standard deviation of the permanent component of the innovation
of the AT, regression for the U.K. possesses the smallest ¢t—ratio of 1.94. For each of the G—7,
the contemporaneous correlation between the permanent innovations in the Al; and AC A;
regressions is negative. However, only the t—ratios for Italy, the U.K., and the U.S. are
greater than two (in absolute terms). This suggests that unrestricted long-run movements
in I, and C'A; have a common source.

A.4  Unit Root Tests

Elliot, Rothenberg, and Stock (1996) present a method to test for a unit root in the
presence of a deterministic mean or trend that is asymptotically more powerful than the
usual DF t—ratio. This method begins by estimating the regression y; = [y + (it + wy.
The next step constructs the predicted values of &, = y;, — Bo — Blt to use in the
augmented DF regression

A-3She@rin and Woo (1990), Otto (1992) and Ghosh (1995) present similar Granger-causality results for
these countries. However, the regressions these authors estimate use the CA; instead of CCA.

A4



k
Wy = pw1 + ZﬂjAwt—j + Uk,

j=1

where the lag length, k, is chosen using the BIC criterion to render u; white noise.** The
GLS-DF t—ratio is constructed using the OLS estimates of p and its standard error. Elliot,
Rothenberg, and Stock provide asymptotic ten percent, five percent, and one percent critical
values for the GLS-DF t—ratio equal to —2.57, —2.89, and —3.48, respectively.

We present OLS estimates of the standard ADF ¢t—ratio using the regression

k
yo o= tho + Uit + v + DAY + e,

Jj=1

where the lag length, k, is chosen to render e; white noise. The lag length, k, is chosen
using the Campbell and Perron (1991) rule. This rule selects a maximum k a priori and
then discards lags until the t—ratio of Ay, becomes less than 1.6 (in absolute value).
MacKinnon (1991) provides asymptotic ten percent, five percent, and one percent critical
values for the DF t—ratio equal to —3.13, —3.41, and —3.96, respectively.

Unit root tests are often criticized because of power problems these tests have, for
example, with trend stationary alternatives.*® Another problem that face unit root tests
is an inability to provide information about the sampling variability of the estimate of 7.
Stock (1991) presents the results of Monte Carlo simulations that are the building blocks
for the construction of asymptotic confidence intervals. We present 95 percent asymptotic
confidence intervals using the ADF regression with an intercept and a linear trend. As Stock
suggests, we use linear interpolation to construct the asymptotic confidence intervals of ~.

A.5 SVAR Estimation Methods

Our estimation strategy follows closely that of King and Watson (1997). Since the
appendix King and Watson (1997) supply contains a large amount of detail about their
estimation methods, this section of our appendix provides only a brief sketch of the way in
which we adapt these estimation methods. In particular, this section includes a description
of the methods we use to estimate the SVAR when either LR ¢4 or LRca serves as the
identifying restriction.

To estimate a SVAR when a long run multiplier acts as the identifying restriction, King
and Watson (1997) use the technique of rewriting a regression to include second difference
terms. When LR ¢4 identifies the SVAR, we develop the bivariate system to estimate by
writing equation (8) as

A-4To choose the lag length, the BIC criterion, In[%a;k] + (k=T)In[T], is minimized over K.
A-5These problems are at the center of the debate of the source of the trend in real U.S. GNP. Diebold and
Senhadji (1996) and Nelson and Murray (1997) present contrasting views of this issue.
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(A51) AIt = )\]7CA(1)AOA15 —I— )\]J(l)AIt_l

+ Arf(WAL ., + Arca(L)A’CAy +  nwy,

where, for example,

p—1 p
ApLA L, = =) ( > )\1,1,s> AL .

j=1 \s=j+1

From (8), it follows that LR;ca = Arca(l)/[1 — Arr(1)]. With a bit of algebra, this
yields the regression

(A52) AIt - ,CRLCAAOAt - )\]J(l)[AIt_l - ,CRLCAAOAt]

+ Arg(LA’L + Arca(L)A*CA + nwe

Since AC'A; can be correlated with ny;, we compute the coeflicients of this equation with an
IV estimator using the instruments {AL,_;, ACA,_;}}_, for the G—7 economies. With the
coefficient estimates of the regression of (A5.2) in hand, we estimate equation (9) by IV with
the instruments {Al,_;, ACA,_;}:_; and fw,. The instrument 7y, denotes the residuals of
regression (A5.2). We use a symmetric procedure when LR ¢4 s serves to identify the SVAR.
Across the G—7, the standard errors of the estimates of LR;c4 and LRca 1 are computed
using the delta method.

Another issue we face is that the procedure just described uses a generated regressor,
Nwt, as an instrument to estimate equation (9). The generated regressor problem arises
because the variables on the right hand side of equation (9) and 7y ; may be correlated. As
a result, an adjustment is needed to the estimator of the covariance matrix of the coefficients
of equation (9). King and Watson (1997) present the details of the adjustment to this
covariance matrix. We do not duplicate their efforts here.

To compute the empirical standard errors of the FEVDs we report in tables 3 and
A5.1—-3, the Monte Carlo procedure begins with estimates of the intercepts, slope coefficients,
and the covariance matrix of the residuals of the REFVAR of equations (A3.1) and (A3.2) for
each member of the G—7. Using these reduced-form estimates, we generate 1000 pairs of
normally distributed, mean zero random variates. The covariance matrix of these random
variates equals the covariance matrix of the reduced-form residuals. From these synthetic
residuals and the estimated intercepts and slope coefficients we build up artificial I, and
the C'A; series. Next, we estimate the SVARs under the identifications of R1, R2, and R6
using these 1000 replications. The estimates of the SVAR using the artificial data allows us
to construct the small sample standard errors of the FEVDs. Since this procedure builds
the Monte Carlo up from the distribution of the RFVAR residuals, the standard errors of
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the FEVDs possesses only an interpretation as draws from the small sample or empirical
distribution of the joint dynamic process that generates I; and the C'A;.

A6 How Do )\I;CA;O, >\CA;I;O; and LRI;CA Aﬁect Estimates Of ERCA”?

To show that LR ¢4 ; depends on the value of A¢c4 10, note that the reduced-form VAR
(A3.1) and (A3.2)

I Anr ar(L) Aar aca(L) Iy EALL

CA, Apca, ar(L)  Aaca, aca(l) CAi4 EACAL

implies that

-1

EALL 1 —AL,0A0 Nw,t
- b
EACAL —ACA,LO 1 Nct
. . _ _1 _
or equation-by-equation ear; = [1 — Arcaodcarol [mwe + Arcaoncd and eacar =

1 — Arcaodcarol Acaromw: + ney. The former expression reveals that movements in
ne, become less important for fluctuations in Al as A\j a0 goes toward zero. In symmetric
fashion, the expression for eaca: shows that fluctuations in 7y, matter more for AC'A; as

Aca, 1,0 moves from zero toward negative one. Next, construct the long-run trends of I, and
CA,

LRr: = [1 — Aarar(1)] 'Aar aca(1)LRoas + €ardl,
and
LRca: = [1 — Aaca aca(D)] Aaca, ar(V)LR1: + encad)-

Substituting ear; and eaca, from above into these expressions, and doing a bit of algebra,
it is straightforward to show

(A5.3) OLR1wrj/Once  _ Arcaoll — Aaca,aca(D)] + Aaraca(1)
‘ OLRcat+;/ ey ArcapAaca, ar(l) + [1 — Aar ar(1)] 7

and
(A5.4) OLRc A+ 0w _ Moaroll — Aarar(D)] + Aaca ar(1) |
OLR 1445/ Onw e AearoAar aca(l) + [1 — Aaca, aca(1)]

The long-run derivatives (A5.3) and (A5.4) are equivalent to LR ca and LRca 1, respec-
tively. Since hm]_,oo 8Xt+j/877w¢ = aﬁth/@nW,t and hm]_,oo 8Xt+j/8nc¢ = aﬁth/anqt,
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where X; = I, C'A;, we can equate the left hand sides of (A5.3) and (A5.4) with the re-
sponse of I; to a permanent movement in C'A; and to the response of C'A; to a permanent
movement in [;, respectively.

We use the derivatives (A5.3) and (A5.4) to study the effect of the different iden-
tification schemes on estimates of LRca ;. First, consider imposing R3 on (A5.3) which
vields LR;ca(R3) = [1 — Aar ar(1)] ' Aar aca(1). Second, evaluate (A5.4) at R4
to produce LRcar(R4) = [1 — Aaca aca(1l)]7*Aaca, ar(1). These long-run multipli-
ers, LRrca1(R3) and LRca(R4), together with a bit of algebra, allows us to write the
derivative of (A5.4) as

Aoato + LRear(RA[1 — Aar ar(D]H1I — Aaca, aca(1)]
AoarolRrca(R3) + [1 — Aar ar(1)]711 — Aaca, aca(1)]

(A5.5)[,RCA7] =

where we use LRcoar = [0LRca+i/Onwil/[OLR+;/0nw.].

Equation (A5.5) shows how our assumptions about Aca s drive point estimates of
LRcar- The second term in the numerator, LRca 1(R4)[1 — Aarar(1)]7H1 — Aacanca(1)],
equals to —0.03, 0.18, —0.17, —0.02, —0.17, and —0.14 for France, Germany, Italy, Japan,
the U.K., and the U.S., respectively. Thus, when Aca 1o (the only other term in the numera-
tor) is close to zero, the numerator itself is close to zero. As Aca 1o becomes smaller than, say
—0.35, the numerator of (A5.5) takes on the sign (negative), and approximately the value,
of A\ca.1o- In the denominator, the term [1 — Aa; a7(1)]7![1 — Aaca aca(1)] dominates.
Since [1 — Az, ar(1)]71 — Aaca, aca(1)] takes on the value of 0.46, 1.21, 0.79, 0.86, 0.39,
and 1.05 for France, Germany, Italy, Japan, the U.K., and the U.S., respectively, this term

is greater than Aca 1 0LR1ca(R3) for any value we choose to impose on Aca s to identify
the SVAR.

A.7  SVAR Results for the G-7 sans Canada

Tables A4.1 — 3 contain point estimates of A\; ca0, Acaro, LRrca, and LRea s as
well as Wald statistics that test a key prediction of the intertemporal model under restrictions
R1— R6 for the G—7 minus Canada. The point estimates we present in these tables reinforce
the results for Canada of table 2. These results are that

(a) estimates of LR ¢ back the inference that only the common world shock, ny+,
drive permanent fluctuations in I,

(b)  estimates of the impact coeflicients A; ca0 and Aca 1o are sensitive to the iden-
tification scheme,

(c) estimates of LRca are closely tied to the value of Aca 10, and

(d) rejections of the hypothesis of the intertemporal, small open economy prediction
that movements in the C'A; are independent of ny; and its lags depend on the choice of the
identification scheme.

Support for item (a) arise in tables A4.1 — 3 because of the t—ratios the estimates of
LR1ca imply. Of the 30 estimates of LR 4 that appear in these tables, only six yield a
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t—ratio greater than two in absolute value (see the top panel of table A4.1 and the bottom
panel of table A4.2). Italy and the U.K. produce two-thirds of these estimates.

Item (b) stands out clearly from an inspection of tables A4.1— 3. For example, under
R1 (the top panel of table A4.1) all the estimates of A\; ca0 are negative and four of the
six estimates possess t—ratios greater than two in absolute value. However, under R2 (the
bottom panel of table A4.1) four of the six estimates of A\; ¢4 are positive and none of these
estimates are statistically different from zero at any reasonable significance level.

We show in section 3.5 of the paper that estimates of LR 4 are tied either to the
identification of Aca 1o or its point estimate. The estimates of LRca 1 we report in tables
A4.1 — 3 bolster this analysis. This observation marks the basis for item (c). Except for the
identification scheme R2 (see the bottom panel of table A4.1), country-by-country estimates
of LR 4,1 are quite close to the value of A\c4 1o given an identification.

Casual inspection of the Wald statistics of tables A4.1 — 3 is enough to clinch support
for item (d). The Wald statistics that identifications R1 and R3 generate make this plain.
Under R1 the null hypothesis of (11) is only rejected by the French data (see the top panel
of table A4.1). However, this hypothesis receives strong rejections by data from France,
Germany, Italy, the U.K., and the U.S. under R3 (see the top panel of table A4.2). The
Wald statistics continue to back our thesis that tests of many of the predictions of the
intertemporal model yield inferences sensitive to the identification.

The forecast error variance decompositions (FEVD) lend support to item (a). When
LRica = 0isnot imposed as the identifying restriction (i.e., R2), we find that the common
world shock 7y, explains more than 65 percent of the variation in I; at a 24 quarter forecast
horizon in eight of the remaining 12 FEVDs. In the case of R2, the FEVDs of I; reveals
that anywhere from 95 to 100 percent can be attributed to nw; at impact (see the top panel
of table A5.2). The FEVDs of I; for France, Germany, Italy, Japan, the U.K., and the U.S.
that we report in the top panels of tables A5.1 —3 provide economically meaningful evidence
that a shock common to the G—7 contributes most to fluctuation in I;. This evidence is
particularly strong at longer forecast horizons.

Tables A5.1—3 also contain results that help to sustain our claim that the persistence
in the C'A; of the G—7 is an important and neglected aspect of the intertemporal approach to
the current account. Under R1 (see the bottom panel of table A5.1), country-specific shocks
in the form of nc; generate about three-fourths or more of movements in the C'A; from
impact to a forecast horizon of one year for the G—7 minus Canada. Since R1 restricts long-
run fluctuations in the C'A; to respond only to n¢;, it is expected that the analogous FEVDs
at the longer forecast horizons should approach 100 percent. In this regard, the FEVDs in
the bottom half of table A5.2 are particularly striking. These FEVDs are calculated under a
long-run identifying restriction imposed on I;, R2. Given no restriction on the behavior of the
C Ay, we find that about 60 percent or more of the variation in this variable is explained by
ne, at all forecast horizons for all six economies. The reduced-form long-run identification
of R6 reverses this result. The bottom half of table A5.3 contains only one FEVD that
possesses a t—ratio greater than two (see the impact FEVD for the U.K.) and none of these

A9



FEVDs is greater than 32 percent.

Our analysis of section 3.5 of the paper resolves the disparate results of the FEVDs of
the C'A; we report in the bottom panels of tables A5.1 — 3. This analysis outlines the close
connection between identifications that impose a restriction on the behavior of C'A; within
the SVAR of (8) and (9) and the estimated unrestricted behavior of the C'A;. As a result,
we should expect to observe FEVDs in which only 7¢; should matter for the C'A; under R1.
The FEVDs of the bottom panel of table A5.1 back this expectation. Likewise, under RG6,
we should anticipate that only common world shocks are responsible for fluctuations in the
CA; as we observe in the bottom panel of table A5.3. Hence, the FEVDs of the C'A; under
R2 (see the bottom panel of table A5.2) are a strong signal for the importance of n¢; and
the impact of these shocks on the persistence of the C A;.

Figures A3 — 8 and A9 — 14 replicate figures 1 and 2 of the paper, respectively. By
and large, the information that figures A3—8 and A9— 14 contain reinforce the discussion we
present in the paper for figures 1 and 2. That is, the 95 percent confidence intervals of figures
A3 — 8 show that the identification matters for inference about R1 and R6. These figures
are in line with figure 1 because support for the restriction of R6 exists only when Aca 1o
is close to negative one. The 95 percent confidence ellipses of figures A9 — 14 provide more
evidence to back our conclusion that minor changes to the identification leads to different
views of the efficacy of the intertemporal, small open economy model.
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Table Al.  Reduced Form Univariate Regressions

ACAt = b() + blAIt + Ut

Glick and Rogoff Results
Sample Period: 1975 — 1990

Canada France Germany Italy Japan U.K. U.S.

by  -030 -042  -023  -0.59 -0.37 -0.60 -0.20
(0.10)  (0.12)  (0.19)  (0.10) (0.10) (0.10) (0.09)

R? 0.38 0.47 0.10 0.71 049 072 0.27

D—-W 1.88 1.42 1.60 1.19 1.54 1.81 1.18

Results Using Quarterly Data
Sample Period:  1975.1 — 1995.4

Canada France Germany Italy Japan U.K. U.S.

by -0.37  -0.37 -0.33 -0.43  -0.20 -054 -0.11
(0.08)  (0.09)  (0.09)  (0.09) (0.08) (0.11) (0.04)
(0.07]  [0.09] (0.15]  [0.11] [0.06] [0.09] [0.04]
R2 0.20 0.17 0.13 022 0.07 022 0.09

D—-W 2.34 2.46 2.50 2.36 1.64 2.72 2.20

The Glick and Rogoff (1995) estimates, taken from the bottom panel of their table 1, are
based on annual data. We use OLS to compute estimates of the slope coefficient b; as do
Glick and Rogoff. OLS standard errors appear in parenthesis. The values in brackets are
Newey-West corrected standard errors. The Newey-West standard errors are constructed

using an automatic lag length adjustment.
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Table A2.1 Reduced Form VARs
Sample Period:  1975.1 — 1995.4

Coeflicient Sums and Tests of Predictive Content

Canada France Germany Italy Japan U.K. U.S.

Aar ar(1) 007 031 016  0.00 046 0.8 -0.09
(0.23)  (0.20)  (0.28)  (0.22) (0.14) (0.30) (0.24)

Aar aca(1) 0.16 030  -0.28  0.05 -0.03 -0.02 -0.26
(0.37)  (0.34)  (0.33)  (0.30) (0.22) (0.36) (0.72)

Aaca ar(1) 0.02  -0.10 014  -026 -0.02 -0.93 -0.13
(0.19)  (0.17)  (0.26)  (0.22) (0.12) (0.32) (0.09)

Anca, aca(1) 042  -051 004  -026 037 -1.12 -0.04
(0.30)  (0.29)  (0.31)  (0.29) (0.18) (0.38) (0.26)

AI Regression : R? 0.09  0.11 0.15 0.15 036 0.03  0.09
0.44]  [0.34]  [0.12]  [0.14] [0.00] [0.95] [0.44]

AC A Regression : R? 0.11 0.19 0.07 0.06 0.10 020 0.21
0.31] [0.04]  [0.66] [0.76] [0.42] [0.03] [0.02]

Wald Test: ACA — AI: 277  3.46 740 673 581 049  0.36
0.60] [0.48]  [0.12]  [0.15] [0.21] [0.97] [0.99]

Wald Test: Al — ACA: 675  11.05 129 372 137 1046 9.51
0.15]  [0.03]  [0.86]  [0.45] [0.85] [0.03] [0.05]

Standard errors appear in parenthesis. The values in brackets are p-values. The p-values
that appear below the R2s represent significance levels for the LM test statistic T x R2.
These statistics are asymptotically distributed x? with eight degrees of freedom. The Wald
statistics that tests the predictive power of either AT for ACA or ACA for AI possess a x?2
distribution with four degrees of freedom asymptotically.
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Table A2.2

Sample Period:

Reduced Form VARS

Forecast Errors

1975.1 — 1995.4

Canada France Germany Italy Japan  U.K. U.S.

o(ear) 440 2164 2225  10716.18 1639.38 4.22  58.04
(1.03)  (5.06) (5.20) (2502.97) (382.91) (0.98) (13.56)

o(eaca) 3.60 18.40 20.75 10332.76  1312.30 4.45  21.05
(0.84)  (4.30)  (4.85)  (2413.41) (306.51) (1.04) (4.92)

Corr(ear, eaca) -0.44 -0.40 -0.46 -0.49 -0.23 -0.51 -0.35
(0.27)  (0.28)  (0.26) (0.25)  (0.31) (0.24) (0.29)

Shocks to Stochastic Trends

Canada France Germany Italy Japan U.K. U.S.

o(er) 4.54 28.79 21.32 10409.73  3096.24  5.26  56.84
(1.49)  (10.80)  (5.28)  (3741.63) (1279.11) (2.71) (17.22)

o(eca) 2.54 12.86 19.79 9369.82 2104.67 3.85 24.11
(0.67)  (3.01) (8.67) (2269.92) (889.18) (0.51) (10.81)

Corr(er, eca) -0.37 -0.39 -0.54 -0.63 -0.30 -0.88  -0.65
(0.38)  (0.45) (0.35) (0.26) (0.45) (0.28)  (0.26)

Standard errors appear in parenthesis.
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Table A3. Unit Root Tests
Sample Period:  1975.1 — 1995.4

Investment

Canada France Germany Italy Japan UK. U.S.

DF-GLS t—ratio —2.64 —1.80 —148 —-388 —2.56 —-182 -—-3.37
Lag Length 1 1 1 2 3 1 1
ADF t—ratio —2.78 =240 —-1.67 —4.07 —-199 -2.11 -3.90
Lag Length 1 2 0 2 3 0 3
ADF AR Root 0.85 0.90 0.93 0.74  0.96 0.90 0.73
95% CI: LL 0.73 0.79 0.89 —— 0.85 0.83 ——
95% CI: UL 1.04 1.05 1.06 0.90 1.05 1.05 093

Current Account

Canada France Germany Italy Japan UK. U.S.

DF-GLS t—ratio —1.72 —2.81 —1.41 —-1.80 —2.41 —-2.15 —1.88
Lag Length 1 1 1 1 2 1 1
ADF t—ratio —2.00 —3.41 —-1.86 —230 —-2.39 —-257 —-1.84
Lag Length 0 0 4 0 2 1 3
ADF AR Root 0.87 0.75 0.91 0.86 0.91 0.85 0.92
95% CI: LL 0.85 0.61 0.86 0.80 0.79 0.76 0.87
95% CI: UL 1.05 1.02 1.05 1.05 1.05 1.04 1.05

The asymptotic ten percent, five percent, and one percent critical values for the GLS-DF
(ADF) t—ratio equal —2.57 (—3.13), —2.89 (—3.41), and —3.48 (—3.96), respectively.
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Table A4.1 Structural VARS
Sample Period:  1975.1 — 1995.4

R1: /:RICA;I = 0
France Germany Italy Japan U.K. U.S.

AL Ao 064  -037 070 -0.33 -0.97 -1.68
(0.30)  (0.24)  (0.19) (0.34) (0.23) (0.58)

AcALo 015  -0.12 026 003 115 0.12
(0.28)  (0.21)  (0.25) (0.22) (0.71) (0.09)

LRica 088  -058  -0.70 -0.44 -1.21 -1.54
(0.66)  (0.32)  (0.25) (0.54) (0.20) (0.59)

Wald Statistic 11.64 148 286 680 3.69 7.2
0.04)  [0.92]  [0.72] [0.24] [0.59] [0.20]

R2: /:RJI;CA = 0
France Germany Italy Japan U.K. U.S.

ALcAo -0.20 030  -0.04 005 001 025
(0.21)  (0.40)  (0.24) (0.36) (0.17) (0.72)

Acao 021  -061  -044 -021 -054 -0.15
(0.17)  (0.24)  (0.20) (0.23) (0.17) (0.09)

LRoar 018  -0.50  -0.57 -0.20 -0.65 -0.28
(0.18)  (0.21)  (0.19) (0.26) (0.12) (0.22)

Wald Statistic  14.40 813  9.96 231 2424 13.94
0.01]  [0.15]  [0.08] [0.80] [0.00] [0.02]

In the top and bottom panels, standard errors appear in parenthesis and the brackets contain
p-values. The Wald statistic and p-values in the top and bottom panel are based on the
hypothesis Acar; = 0, 7 = 0, ..., 4, and five degrees of freedom.
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Table A4.2 Structural VARS
Sample Period:  1975.1 — 1995.4

R3: )\I;CA;O = 0
France Germany Italy Japan U.K. U.S.

ACALo 034  -043  -047 -0.18 -0.53 -0.12
(0.08)  (0.09)  (0.09) (0.08) (0.10) (0.04)

LR1ca 044  -024 005 -0.06 -0.02 -0.24
(0.58)  (0.26) (0.31) (0.41) (0.43) (0.63)

LRcar 024  -032  -059 -0.18 -0.64 -0.25
(0.10)  (0.20)  (0.14) (0.18) (0.10) (0.08)

Wald Statistic 20.69  23.80 3150 621 43.12 22.30
0.00]  [0.00]  [0.00] [0.29] [0.00] [0.00]

R4 - )\CA;I;O = 0
France Germany Italy Japan U.K. U.S.

Arcao 048  -049  -050 -0.20 -0.48 -0.96
(0.12)  (0.10)  (0.10) (0.13) (0.09) (0.28)

LRica 056  -0.69  -052 -0.39 -0.82 -1.04
(0.43)  (0.23)  (0.21) (0.40) (0.19) (0.53)

LRoar -0.07 015  -0.21 -0.02 -0.44 -0.13
(0.11)  (0.30)  (0.14) (0.18) (0.11) (0.07)

Wald Statistic 11.05 129 372 137 1046 9.52
0.03]  [0.86]  [0.44] [0.85] [0.03] [0.05]

In the top and bottom panels, standard errors appear in parenthesis and the brackets contain
p-values. The Wald statistic and p-values in the top (bottom) panel are based on the
hypothesis A\cays; = 0,7 =0, ..., 4 (j = 1, ..., 4), and five (four) degrees of freedom.
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Table A4.3 Structural VARS
Sample Period:  1975.1 — 1995.4

France Germany Italy Japan  U.K. U.S.
AL,CAO 1.73 1.29 1.15 1.79 0.80 151.88

(0.61)  (0.47)  (0.43) (0.52) (0.31)  (985.90)

LRica 5.75 0.71 216 216 2696  -8.37
(6.35)  (0.74)  (2.20) (1.85) (254.35)  (5.93)

LRoar 066  -0.82  -1.04 -0.83 -0.82  -0.93
(0.17)  (0.20)  (0.20) (0.31) (0.10)  (0.42)

Wald Statistic 291 1277  7.96 1037 1068  11.22
057 [0.01]  [0.09] [0.03] [0.03]  [0.02]

R6 : /:RICA;I = —1

France Germany Italy Japan U.K. U.S.

ALcAo 4.55 2.49 1.00 249  3.02  -132.86
(4.87)  (2.55)  (0.76) (2.06) (3.80) (1836.17)

AcALo -1.42 126 -0.95 -1.22 149  -1.10
(0.38)  (0.37)  (0.21) (0.54) (0.41)  (0.79)

LR ca 34.23 1.38 178  3.09 -3.18  -7.48
(192.75)  (1.78)  (2.30) (3.97) (2.14)  (7.08)

Wald Statistic ~ 2.94 9.61 837 789  9.09 9.20
[0.71] 0.09]  [0.09] [0.16] [0.10]  [0.10]

In the top and bottom panels, standard errors appear in parenthesis and the brackets contain
p-values. The Wald statistic and p-values in the top (bottom) panel are based on the
hypothesis A\cays; = 0,7 =1, ..., 4 (j = 0, ..., 4), and four (five) degrees of freedom.
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Table A5.1 FEVD under R1: LRcar = 0

Investment Response to the World Shock
Forecast Horizon France Germany Italy Japan  U.K. U.S.

0 7096 8830  56.76  93.00  22.62  65.60
(22.19)  (16.95) (19.37) (17.18) (15.92) (18.12)

2 7089  88.06  56.76  93.00 17.42  65.40
(22.36)  (17.25) (19.37) (17.19) (15.11) (18.22)

4 7089 8819  56.76  93.00 16.73  65.40
(22.34)  (17.29)  (19.37) (17.19) (14.43) (18.22)

12 71.09 8833 5676  93.00 16.87  65.31
(22.25)  (17.33)  (19.37) (17.19) (13.68) (18.25)

24 7115 8840  56.76  93.00  16.93  65.29
(22.16)  (17.35)  (19.37) (17.19) (13.59) (18.25)

Current Account Response to the Country-Specific Shock
Forecast Horizon France Germany Italy Japan  U.K. U.S.

0 97.69 9843 9586 99.88  73.25  92.75
(11.37)  (8.42)  (9.16) (11.23) (15.94) (10.24)

2 97.88 9811 9586 99.88 7530  93.34
(11.27)  (8.69)  (9.16) (11.23) (16.32) (9.86)

4 9782 9814 9586 99.88  76.02  93.30
(11.39)  (8.68)  (9.16) (11.23) (15.78) (10.03)

12 97.71 9812 9586 99.88  77.74  93.36
(11.07)  (8.70)  (9.16) (11.23) (14.02) (10.06)

24 97.68  98.13 9586 99.88  78.34  93.37
(10.99)  (8.70)  (9.16) (11.23) (13.59) (10.38)

In the top and bottom panels, small sample empirical standard errors appear in parenthesis.
We generate 1000 replications of the SVAR to compute the empirical standard errors.
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Table A5.2 FEVD under R2: LRrca = 0

Investment Response to the World Shock
Forecast Horizon France Germany Italy Japan U.K. U.S.

0 97.20 9543  99.87 99.86 99.99  99.30
(6.74)  (11.72)  (6.19) (9.26) (3.41) (6.91)

2 9727 9554  99.87 99.86 99.60 99.32
(6.75)  (11.81) (6.19) (9.26) (3.72) (6.89)

4 9726  95.44  99.87 99.86 99.38 99.32
(6.75)  (11.89)  (6.19) (9.26) (3.97) (6.90)

12 9730 9537  99.87 99.86 98.15 99.33
(6.69) (11.76) (6.19) (9.27) (4.20) (6.90)

24 9732 9533  99.87 99.86 99.07 99.33
(6.66)  (11.58) (6.19) (9.27) (4.26) (6.90)

Current Account Response to the Country-Specific Shock
Forecast Horizon France Germany Italy Japan  U.K. U.S.

0 93.80  59.47 7897 9284 7358  82.01
(11.35)  (23.06) (17.09) (15.67) (14.92) (16.31)

2 93.53 5820 7897 92.84  69.45  81.69
(11.74)  (23.39) (17.09) (15.67) (16.81) (16.73)

4 93.66 5838 7897 9284 6854  81.47
(11.83)  (23.42) (17.10) (15.68) (17.48) (17.20)

12 93.91 5829 7897 9284 67.80  81.29
(11.90) (23.54) (17.10) (15.68) (17.90) (17.51)

24 93.99 5830 7897 92.84 67.56  81.24
(11.92)  (23.50) (17.09) (15.69) (18.06) (17.62)

In the top and bottom panels, small sample empirical standard errors appear in parenthesis.
We generate 1000 replications of the SVAR to compute the empirical standard errors.
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Table A5.3 FEVD under R6: LRcar = -1

Investment Response to the World Shock
Forecast Horizon France Germany Italy Japan  U.K. U.S.

0 3449  49.92 7545 3628  47.58  10.78
(17.18)  (21.96) (18.83) (23.62) (20.99) (15.96)

2 3550  49.96 7545 3629  68.06  63.56
(19.09) (22.33)  (18.86) (23.59) (18.46) (25.19)

4 3740 4337 7545 3628  86.30  100.00
(22.84)  (23.25)  (18.50) (24.04) (16.91) (34.85)

12 51.52  49.15 7545 3626  95.96  100.00
(24.42)  (21.98) (17.42) (25.50) (12.67) (36.02)

24 85.50  49.06 7545 3625 9451  100.00
(22.61)  (20.70)  (16.40) (25.75) (11.06) (36.62)

Current Account Response to the Country-Specific Shock
Forecast Horizon France Germany Italy Japan  U.K. U.S.

0 4.38 9.30 2642 16.09  31.07  00.04
(9.42)  (14.89) (18.35) (19.62) (12.96) (8.12)

2 4.34 8.40 2642  16.08  9.14  00.02
(9.36)  (14.48) (18.35) (19.75) (11.78) (16.50)

4 5.15 857 2641 16.06  6.61  0.00
(10.03)  (14.80) (18.35) (20.02) (11.99) (23.32)

12 16.82 8.54 2641 1605 556  0.00
(14.34)  (15.54) (18.35) (20.98) (12.42) (28.01)

24 6.02 8.54 2641 1605 552  0.00
(15.34)  (15.63) (18.32) (21.04) (12.83) (28.51)

In the top and bottom panels, small sample empirical standard errors appear in parenthesis.
We generate 1000 replications of the SVAR to compute the empirical standard errors.
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