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Appendix

This appendix contains more information about our data set and describes our estima-
tion methods. Details about our data set appear in section A.1. Estimates of the contempo-
raneous correlation of the ¯rst di®erences of the current account, ¢CAt, and investment ¢It
for the rest of the G¡7 economies (i:e:, France, Germany, Italy, Japan, the U.K., and the
U.S.) are found in section A.2. Section A.3 discusses reduced-form VAR (RFVAR) estima-
tion procedures and results for the entire G¡7. Unit root tests and the results of these tests
are furnished in section A.4. Section A.5 outlines the way in which we estimate the structural
VARs (SVARs) of section 4 of the paper. The relationship between the short run and long
run responses of the current account to investment and common world shocks is discussed
for the remainder of the G¡7 in section A.6. The appendix ¯nishes with section A.7 that
provides estimates of the relevant SVAR coe±cients, forecast error variance decompositions
(FEVDs), and graphical evidence for the remainder of the G¡7.

A.1 Data
The paper uses quarterly data that spans the period 1973:1¡1995:4. All of our estimates

are based on the 1975:1¡ 1995:4 sample. We require data earlier than 1975:1 for lags when
computing ADF regressions and estimating VARs. Our de¯nition of investment equals the
sum of gross capital formation and the change in stocks (i:e. inventories) with one exception.
The U.S. investment series includes gross capital formation of the government. This de¯nition
of investment is the same one Glick and Rogo® (1995) use. The source of the quarterly gross
capital formation series is Datastream. In Datastream, this data appears in billions of
constant local currency units and is seasonally adjusted at annual rates. Quarterly data for
the change in stocks for the G¡7 and the U.S. gross capital formation of the government
series are found in the IFS data bank. The IFS provides this data in current local currency
units, seasonally adjusted, at annual rates. We convert this nominal data to real data using
the GDP price de°ators of the G¡7. We obtain the GDP price de°ators from Datastream.
Subsequent to making an adjustment to annual rates where appropriate, this completes the
task of creating the investment series.

Datastream reports quarterly current account data in millions of current U.S. dollars
for the G¡7 with the exception of the current account series for Canada, Japan, and the
U.K. In Datastream, the current account series for Japan appears at the monthly frequency
in millions of U.S. dollars. We temporally aggregate the monthly data to form a quarterly
series. The current account series for Canada and the U.K. are provided in millions of
current local currency units. All of the current account data in Datastream are seasonally
adjusted with the exception of the series for France and Italy. We apply the X¡11 ¯lter to
seasonally adjust these series. To convert the current account series for France, Germany,
Italy, and Japan to millions of constant local currency units, we apply the appropriate U.S.
dollar=local currency exchange rate. The quarterly exchange rate data we employ is from
the IFS and has been generously provided by Mick Devereux. Next, we use GDP de°ators
to create quarterly current account series in millions of constant local currency units. The
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¯nal step produces current account series for the G¡7 in billions of constant local currency
units at annual rates.

Figures A1 and A2 contain time plots of the level of investment, It, and the level of
the current account, CAt, for the G¡7 economies in alphabetical order. The most striking
aspect of this data is the observed inverse relationship between It and the CAt. However,
no structural interpretation can be given to this observation.

A.2 Reduced Form Univariate Regressions
At the beginning of section 3 of the paper, we present evidence that the contemporaneous

correlation of ¢CAt and ¢It for Canada matches estimates reported elsewhere. In this
section, we present evidence that our entire G¡7 data set produces similar estimates of the
slope coe±cient of the regression

¢CAt = b0 + b1¢It + Àt:

Among others, Glick and Rogo® (1995) note that much of the literature that studies the
degree of international capital mobility examines the slope coe±cient of this regression. Since
Glick and Rogo® report estimates of b1 that are less than zero, the estimates make dubious
the Feldstein and Horioka (1980) story of autarkic national capital markets. However, at
face value the Glick and Rogo® estimates cannot be taken as evidence of perfect capital
mobility internationally because these estimates of b1 are less negative than negative one.

The upper half of table A1 reproduces Glick and Rogo®'s ordinary least squares (OLS)
estimates. Our results appear in the bottom half of the table. The sample period for our
regression begins with 1975:1 and ends at 1995:4, while the Glick-Rogo® estimates are based
on annual data from 1975 to 1990.A.1 For our estimates of b1, we provide both OLS and
Newey-West (1994) standard errors. Our estimates of b1 are all negative with an average
estimate of ¡0:33. The average Glick-Rogo® estimate is about ¡0:39. With the exception of
Germany, all of our estimates of b1 are smaller (in absolute value) than those Glick and Rogo®
report. All of our estimates of b1 possess t¡ratios greater than two in absolute value.A.2

Thus, our estimates of the reduced form regressions indicate that the correlation between
¢CAt and ¢It in our data set is similar to that found by other researchers. To reiterate our
discussion just before section 3.1 of the paper, no structural interpretation can be given to
these estimates without an identi¯cation scheme.

A.3 Reduced-Form VAR Estimation
The results of estimating the reduced form VAR of ¢CAt and ¢It appear in tables

A2:1 ¡ 2. For each G¡7 member, we compute OLS estimates of the fourth-order VAR
A.1Estimates for the 1975:1¡1990:4 sample are qualitatively similar to those for the 1975:1¡1995:4 sample.
A.2The major di®erence between our estimates and those of Glick and Rogo® is the R2 and Durbin-Watson

(D¡W) statistics. For six of the seven regressions, the value of R2 we report is smaller than those in the top
panel of table A1. On the other hand, the Glick-Rogo® D¡W statistics are smaller than ours. Most likely,
the source of these di®erences is temporal aggregation.
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¢It = A¢I;¢I(L)¢It¡1 + A¢I;¢CA(L)¢CAt¡1 + "¢I;t;(A3.1)

and

¢CAt = A¢CA;¢I(L)¢It¡1 + A¢CA;¢CA(L)¢CAt¡1 + "¢CA;t:(A3.2)

We estimate the reduced form VAR of (A3.1) and (A3.2) by ordinary least squares (OLS).
These results appear in table A2:1. The Granger-causality tests we present in table A2:1
follow the advice of Hamilton (1994) and construct a test statistic that asymptotically pos-
sesses the Â2 distribution with four degrees of freedom. To compute the forecast errors and
shocks to the stochastic trends that appear in table A2:2, we estimate a slightly altered
reduced form VAR. In this instance, we write equations (A3.1) and (A3.2) as

¢It = A¢I;¢I(1)¢It¡1 + A¢I;¢I(L)¢2It¡1(A3.3)

+ A¢I;¢CA(1)¢CAt¡1 + A¢I;¢CA(L)¢2CAt¡1 + "¢I;t;

and

¢CAt = A¢CA;¢I(1)¢It¡1 + A¢CA;¢I(L)¢2It¡1(A3.4)

+ A¢CA;¢CA(1)¢CAt¡1 + A¢CA;¢CA(L)¢2CAt¡1 + "¢CA;t;

where the lag operators are of order p ¡ 1. Standard deviations of the forecast errors
and their correlations are calculated from the OLS residuals of the regressions (A3.3) and
(A3.4) for all of the G¡7 economies. To generate the standard deviations of the stochastic
trends and their correlation for the G¡7, we combine the OLS estimates of the coe±cients
A¢I; ¢CA(1); A¢I; ¢I(1); A¢CA; ¢I(1), and A¢CA; ¢CA(1) with the covariance matrix of the
reduced form OLS residuals of the regressions (A3.3) and (A3.4). We follow King and Wat-
son (1997) and compute the standard errors of the stochastic trends and their correlation by
the delta method.

In table A2:1, we report sums of the estimated coe±cients of equations (A3.1) and
(A3.2), their standard errors, LM tests, and Granger-causality tests. Although there are
some noticeable patterns across the G¡7 in the signs of these sums of coe±cients, only those
for Japan and the U.K. have a t¡ratio greater than two. For Japan, the coe±cient sums
with a t¡ratio greater than two are the autoregressive parameters of equations (A3.1) and
(A3.2). For the U.K., the coe±cient sums with t¡ratios greater than two (in absolute terms)
are in equation (A3.2), the ¢CAt regression.

Results of the LM and Granger-causality tests produce a similar picture. The LM test
computes the statistic T £ R2 to provide information about the hypothesis that all of the
slope coe±cients of either equation (A3.1) or equation (A3.2) are jointly equal to zero. In this
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case, the test statistic is asymptotically distributed Â2 with eight degrees of freedom. Of the
14 regressions, only four regressions, the ¢It regression for Japan and the ¢CAt regressions
for France, the U.K. and the U.S., reject the hypothesis at the ¯ve percent signi¯cance level.
Likewise, the tests for Granger-causality suggest that ¢CA possesses no forecasting power
for ¢I across the G¡7. On the other hand, using equation (A3.2) to test the hypothesis
that A¢CA; ¢I(j) = 0; j = 1; : : : ; 4, yields evidence that is a bit more mixed. In this
case, ¢I possesses forecasting power for ¢CA for France, the U.K., and the U.S. at the
¯ve percent signi¯cance level or better. These Granger-causality tests lend some support
for the notion that lags of ¢It do not matter for ¢CAt, as implied by the intertemporal,
small open economy model. There exists stronger evidence that lags of ¢CAt do not predict
movements in ¢It.A.3 Taken together with the estimates of the coe±cient sums, the results
of the LM tests and the Granger-causality tests appear to support the inference that, except
for Japan, ¢It is to a ¯rst approximation white noise, but that ¢CAt is white noise for
Canada, Germany, and Italy, at least, in the context of the RFVAR of (A3.1) and (A3.2).

The top panel of table 2:2 contains summary statistics of the one-step ahead forecast
errors. Except for the U.K., the standard deviation of the innovation of the ¢It regression
is greater than that for the ¢CAt regression for all G¡7 economies. In addition, all of
the estimated standard deviations possess t¡ratios greater than two. As expected, the con-
temporaneous correlation between the innovations of ¢It and ¢CAt regressions is negative.
Aside from the U.K., the absolute value of the t¡ratios of these correlations is less than two.
At short horizons, news about unrestricted forecasts of ¢It and ¢CAt are orthogonal.

Estimates of the stochastic trends appear in the bottom panel of table 2:2. For the
entire G¡7, the standard deviation of the permanent component of the innovation of the
¢It regression is greater than the same statistic for the ¢CAt regression. Among this set of
standard deviations, the standard deviation of the permanent component of the innovation
of the ¢It regression for the U.K. possesses the smallest t¡ratio of 1:94. For each of the G¡7,
the contemporaneous correlation between the permanent innovations in the ¢It and ¢CAt
regressions is negative. However, only the t¡ratios for Italy, the U.K., and the U.S. are
greater than two (in absolute terms). This suggests that unrestricted long-run movements
in It and CAt have a common source.

A.4 Unit Root Tests
Elliot, Rothenberg, and Stock (1996) present a method to test for a unit root in the

presence of a deterministic mean or trend that is asymptotically more powerful than the
usual DF t¡ratio. This method begins by estimating the regression yt = ¯0 + ¯1t + !t.
The next step constructs the predicted values of !̂t = yt ¡ ^̄

0 ¡ ^̄
1t to use in the

augmented DF regression
A.3She®rin and Woo (1990), Otto (1992) and Ghosh (1995) present similar Granger-causality results for

these countries. However, the regressions these authors estimate use the CAt instead of ¢CAt.
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!̂t = ½!̂t¡1 +
kX

j=1
#j¢!̂t¡j + ut;k;

where the lag length, k, is chosen using the BIC criterion to render ut white noise.A.4 The
GLS-DF t¡ratio is constructed using the OLS estimates of ½ and its standard error. Elliot,
Rothenberg, and Stock provide asymptotic ten percent, ¯ve percent, and one percent critical
values for the GLS-DF t¡ratio equal to ¡2:57, ¡2:89, and ¡3:48, respectively.

We present OLS estimates of the standard ADF t¡ratio using the regression

yt = Ã0 + Ã1t + °yt¡1 +
kX

j=1
»j¢yt¡j + et;

where the lag length, k, is chosen to render et white noise. The lag length, k, is chosen
using the Campbell and Perron (1991) rule. This rule selects a maximum k a priori and
then discards lags until the t¡ratio of ¢yt¡k becomes less than 1:6 (in absolute value).
MacKinnon (1991) provides asymptotic ten percent, ¯ve percent, and one percent critical
values for the DF t¡ratio equal to ¡3:13, ¡3:41, and ¡3:96, respectively.

Unit root tests are often criticized because of power problems these tests have, for
example, with trend stationary alternatives.A.5 Another problem that face unit root tests
is an inability to provide information about the sampling variability of the estimate of °.
Stock (1991) presents the results of Monte Carlo simulations that are the building blocks
for the construction of asymptotic con¯dence intervals. We present 95 percent asymptotic
con¯dence intervals using the ADF regression with an intercept and a linear trend. As Stock
suggests, we use linear interpolation to construct the asymptotic con¯dence intervals of °.

A.5 SVAR Estimation Methods
Our estimation strategy follows closely that of King and Watson (1997). Since the

appendix King and Watson (1997) supply contains a large amount of detail about their
estimation methods, this section of our appendix provides only a brief sketch of the way in
which we adapt these estimation methods. In particular, this section includes a description
of the methods we use to estimate the SVAR when either LRI;CA or LRCA;I serves as the
identifying restriction.

To estimate a SVAR when a long run multiplier acts as the identifying restriction, King
and Watson (1997) use the technique of rewriting a regression to include second di®erence
terms. When LRI;CA identi¯es the SVAR, we develop the bivariate system to estimate by
writing equation (8) as
A.4To choose the lag length, the BIC criterion, ln[¾̂2

u;k] + (k=T )ln[T ], is minimized over k.
A.5These problems are at the center of the debate of the source of the trend in real U.S. GNP. Diebold and

Senhadji (1996) and Nelson and Murray (1997) present contrasting views of this issue.
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¢It = ¸I;CA(1)¢CAt + ¸I;I(1)¢It¡1(A5.1)

+ ¤I;I(L)¢2It¡1 + ¤I;CA(L)¢2CAt¡1 + ´W;t;

where, for example,

¤I;I(L)¢2It¡1 = ¡
p¡1X

j=1

0
@

pX

s=j+1
¸I;I;s

1
A¢2It¡j:

From (8), it follows that LRI;CA = ¸I;CA(1)=[1 ¡ ¸I;I(1)]. With a bit of algebra, this
yields the regression

¢It ¡ LRI;CA¢CAt = ¸I;I(1)[¢It¡1 ¡ LRI;CA¢CAt](A5.2)

+ ¤I;I(L)¢2It¡1 + ¤I;CA(L)¢2CAt¡1 + ´W;t:

Since ¢CAt can be correlated with ´W;t, we compute the coe±cients of this equation with an
IV estimator using the instruments f¢It¡j; ¢CAt¡jgpj=1 for the G¡7 economies. With the
coe±cient estimates of the regression of (A5.2) in hand, we estimate equation (9) by IV with
the instruments f¢It¡j; ¢CAt¡jgpj=1 and ^́W;t. The instrument ^́W;t denotes the residuals of
regression (A5.2). We use a symmetric procedure when LRCA;I serves to identify the SVAR.
Across the G¡7, the standard errors of the estimates of LRI;CA and LRCA;I are computed
using the delta method.

Another issue we face is that the procedure just described uses a generated regressor,
^́W;t, as an instrument to estimate equation (9). The generated regressor problem arises
because the variables on the right hand side of equation (9) and ^́W;t may be correlated. As
a result, an adjustment is needed to the estimator of the covariance matrix of the coe±cients
of equation (9). King and Watson (1997) present the details of the adjustment to this
covariance matrix. We do not duplicate their e®orts here.

To compute the empirical standard errors of the FEVDs we report in tables 3 and
A5:1¡3, the Monte Carlo procedure begins with estimates of the intercepts, slope coe±cients,
and the covariance matrix of the residuals of the RFVAR of equations (A3.1) and (A3.2) for
each member of the G¡7. Using these reduced-form estimates, we generate 1000 pairs of
normally distributed, mean zero random variates. The covariance matrix of these random
variates equals the covariance matrix of the reduced-form residuals. From these synthetic
residuals and the estimated intercepts and slope coe±cients we build up arti¯cial It and
the CAt series. Next, we estimate the SVARs under the identi¯cations of R1, R2, and R6
using these 1000 replications. The estimates of the SVAR using the arti¯cial data allows us
to construct the small sample standard errors of the FEVDs. Since this procedure builds
the Monte Carlo up from the distribution of the RFVAR residuals, the standard errors of
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the FEVDs possesses only an interpretation as draws from the small sample or empirical
distribution of the joint dynamic process that generates It and the CAt.

A.6 How Do ¸I;CA;0; ¸CA;I;0, and LRI;CA A®ect Estimates of LRCA;I?
To show that LRCA;I depends on the value of ¸CA;I;0, note that the reduced-form VAR

(A3.1) and (A3.2)

2
64
It

CAt

3
75 =

2
64
A¢I; ¢I(L) A¢I; ¢CA(L)

A¢CA; ¢I(L) A¢CA; ¢CA(L)

3
75

2
64
It¡1

CAt¡1

3
75 +

2
64
"¢I;t

"¢CA;t

3
75 ;

implies that

2
64
"¢I;t

"¢CA;t

3
75 =

2
64

1 ¡¸I;CA;0

¡¸CA;I;0 1

3
75

¡1 2
64
´W;t

´C;t

3
75 ;

or equation-by-equation "¢I;t = [1 ¡ ¸I;CA;0¸CA;I;0]¡1[´W;t + ¸I;CA;0´C;t] and "¢CA;t =
[1 ¡ ¸I;CA;0¸CA;I;0]¡1[¸CA;I;0´W;t + ´C;t]. The former expression reveals that movements in
´C;t become less important for °uctuations in ¢It as ¸I;CA;0 goes toward zero. In symmetric
fashion, the expression for "¢CA;t shows that °uctuations in ´W;t matter more for ¢CAt as
¸CA;I;0 moves from zero toward negative one. Next, construct the long-run trends of It and
CAt

LRI;t = [1 ¡ A¢I; ¢I(1)]¡1[A¢I; ¢CA(1)LRCA;t + "¢I;t];

and

LRCA;t = [1 ¡ A¢CA; ¢CA(1)]¡1[A¢CA; ¢I(1)LRI;t + "¢CA;t]:

Substituting "¢I;t and "¢CA;t from above into these expressions, and doing a bit of algebra,
it is straightforward to show

@LRI;t+j=@´C;t
@LRCA;t+j=@´C;t

=
¸I;CA;0[1 ¡ A¢CA; ¢CA(1)] + A¢I; ¢CA(1)
¸I;CA;0A¢CA; ¢I(1) + [1 ¡ A¢I; ¢I(1)]

;(A5.3)

and

@LRCA;t+j=@´W;t
@LRI;t+j=@´W;t

=
¸CA;I;0[1 ¡ A¢I; ¢I(1)] + A¢CA; ¢I(1)
¸CA;I;0A¢I; ¢CA(1) + [1 ¡ A¢CA; ¢CA(1)]

:(A5.4)

The long-run derivatives (A5.3) and (A5.4) are equivalent to LRI;CA and LRCA;I , respec-
tively. Since limj!1 @Xt+j=@´W;t = @LRX;t=@´W;t and limj!1 @Xt+j=@´C;t = @LRX;t=@´C;t,
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where Xt = It; CAt, we can equate the left hand sides of (A5.3) and (A5.4) with the re-
sponse of It to a permanent movement in CAt and to the response of CAt to a permanent
movement in It, respectively.

We use the derivatives (A5.3) and (A5.4) to study the e®ect of the di®erent iden-
ti¯cation schemes on estimates of LRCA;I . First, consider imposing R3 on (A5.3) which
yields LRI;CA(R3) = [1 ¡ A¢I; ¢I(1)]¡1A¢I; ¢CA(1). Second, evaluate (A5.4) at R4
to produce LRCA;I(R4) = [1 ¡ A¢CA; ¢CA(1)]¡1A¢CA; ¢I(1). These long-run multipli-
ers, LRI;CA;I(R3) and LRCA;I(R4), together with a bit of algebra, allows us to write the
derivative of (A5.4) as

LRCA;I =
¸CA;I;0 + LRCA;I(R4)[1 ¡ A¢I; ¢I(1)]¡1[1 ¡ A¢CA; ¢CA(1)]
¸CA;I;0LRI;CA(R3) + [1 ¡ A¢I; ¢I(1)]¡1[1 ¡ A¢CA; ¢CA(1)]

;(A5.5)

where we use LRCA;I ´ [@LRCA;t+j=@´W;t]=[@LRI;t+j=@´W;t].
Equation (A5.5) shows how our assumptions about ¸CA;I;0 drive point estimates of

LRCA;I . The second term in the numerator, LRCA;I(R4)[1¡A¢I;¢I(1)]¡1[1¡A¢CA;¢CA(1)],
equals to ¡0:03; 0:18; ¡0:17; ¡0:02; ¡0:17, and ¡0:14 for France, Germany, Italy, Japan,
the U.K., and the U.S., respectively. Thus, when ¸CA;I;0 (the only other term in the numera-
tor) is close to zero, the numerator itself is close to zero. As ¸CA;I;0 becomes smaller than, say
¡0:35, the numerator of (A5.5) takes on the sign (negative), and approximately the value,
of ¸CA;I;0. In the denominator, the term [1 ¡ A¢I; ¢I(1)]¡1[1 ¡ A¢CA; ¢CA(1)] dominates.
Since [1 ¡ A¢I; ¢I(1)]¡1[1 ¡ A¢CA; ¢CA(1)] takes on the value of 0:46; 1:21; 0:79; 0:86; 0:39,
and 1:05 for France, Germany, Italy, Japan, the U.K., and the U.S., respectively, this term
is greater than ¸CA;I;0LRI;CA(R3) for any value we choose to impose on ¸CA;I;0 to identify
the SVAR.

A.7 SVAR Results for the G-7 sans Canada
Tables A4:1 ¡ 3 contain point estimates of ¸I;CA;0; ¸CA;I;0; LRI;CA, and LRCA;I as

well as Wald statistics that test a key prediction of the intertemporal model under restrictions
R1¡R6 for the G¡7 minus Canada. The point estimates we present in these tables reinforce
the results for Canada of table 2. These results are that

(a) estimates of LRI;CA back the inference that only the common world shock, ´W;t,
drive permanent °uctuations in It,

(b) estimates of the impact coe±cients ¸I;CA;0 and ¸CA;I;0 are sensitive to the iden-
ti¯cation scheme,

(c) estimates of LRCA;I are closely tied to the value of ¸CA;I;0, and
(d) rejections of the hypothesis of the intertemporal, small open economy prediction

that movements in the CAt are independent of ´W;t and its lags depend on the choice of the
identi¯cation scheme.

Support for item (a) arise in tables A4:1¡ 3 because of the t¡ratios the estimates of
LRI;CA imply. Of the 30 estimates of LRI;CA that appear in these tables, only six yield a
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t¡ratio greater than two in absolute value (see the top panel of table A4:1 and the bottom
panel of table A4:2). Italy and the U.K. produce two-thirds of these estimates.

Item (b) stands out clearly from an inspection of tables A4:1¡3. For example, under
R1 (the top panel of table A4:1) all the estimates of ¸I;CA;0 are negative and four of the
six estimates possess t¡ratios greater than two in absolute value. However, under R2 (the
bottom panel of table A4:1) four of the six estimates of ¸I;CA;0 are positive and none of these
estimates are statistically di®erent from zero at any reasonable signi¯cance level.

We show in section 3.5 of the paper that estimates of LRCA;I are tied either to the
identi¯cation of ¸CA;I;0 or its point estimate. The estimates of LRCA;I we report in tables
A4:1¡ 3 bolster this analysis. This observation marks the basis for item (c). Except for the
identi¯cation scheme R2 (see the bottom panel of table A4:1), country-by-country estimates
of LRCA;I are quite close to the value of ¸CA;I;0 given an identi¯cation.

Casual inspection of the Wald statistics of tables A4:1¡3 is enough to clinch support
for item (d). The Wald statistics that identi¯cations R1 and R3 generate make this plain.
Under R1 the null hypothesis of (11) is only rejected by the French data (see the top panel
of table A4:1). However, this hypothesis receives strong rejections by data from France,
Germany, Italy, the U.K., and the U.S. under R3 (see the top panel of table A4:2). The
Wald statistics continue to back our thesis that tests of many of the predictions of the
intertemporal model yield inferences sensitive to the identi¯cation.

The forecast error variance decompositions (FEVD) lend support to item (a). When
LRI;CA = 0 is not imposed as the identifying restriction (i:e., R2), we ¯nd that the common
world shock ´W;t explains more than 65 percent of the variation in It at a 24 quarter forecast
horizon in eight of the remaining 12 FEVDs. In the case of R2, the FEVDs of It reveals
that anywhere from 95 to 100 percent can be attributed to ´W;t at impact (see the top panel
of table A5:2). The FEVDs of It for France, Germany, Italy, Japan, the U.K., and the U.S.
that we report in the top panels of tables A5:1¡3 provide economically meaningful evidence
that a shock common to the G¡7 contributes most to °uctuation in It. This evidence is
particularly strong at longer forecast horizons.

Tables A5:1¡3 also contain results that help to sustain our claim that the persistence
in the CAt of the G¡7 is an important and neglected aspect of the intertemporal approach to
the current account. Under R1 (see the bottom panel of table A5:1), country-speci¯c shocks
in the form of ´C;t generate about three-fourths or more of movements in the CAt from
impact to a forecast horizon of one year for the G¡7 minus Canada. Since R1 restricts long-
run °uctuations in the CAt to respond only to ´C;t, it is expected that the analogous FEVDs
at the longer forecast horizons should approach 100 percent. In this regard, the FEVDs in
the bottom half of table A5:2 are particularly striking. These FEVDs are calculated under a
long-run identifying restriction imposed on It, R2. Given no restriction on the behavior of the
CAt, we ¯nd that about 60 percent or more of the variation in this variable is explained by
´C;t at all forecast horizons for all six economies. The reduced-form long-run identi¯cation
of R6 reverses this result. The bottom half of table A5:3 contains only one FEVD that
possesses a t¡ratio greater than two (see the impact FEVD for the U.K.) and none of these
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FEVDs is greater than 32 percent.

Our analysis of section 3.5 of the paper resolves the disparate results of the FEVDs of
the CAt we report in the bottom panels of tables A5:1 ¡ 3. This analysis outlines the close
connection between identi¯cations that impose a restriction on the behavior of CAt within
the SVAR of (8) and (9) and the estimated unrestricted behavior of the CAt. As a result,
we should expect to observe FEVDs in which only ´C;t should matter for the CAt under R1.
The FEVDs of the bottom panel of table A5:1 back this expectation. Likewise, under R6,
we should anticipate that only common world shocks are responsible for °uctuations in the
CAt as we observe in the bottom panel of table A5:3. Hence, the FEVDs of the CAt under
R2 (see the bottom panel of table A5:2) are a strong signal for the importance of ´C;t and
the impact of these shocks on the persistence of the CAt.

Figures A3 ¡ 8 and A9 ¡ 14 replicate ¯gures 1 and 2 of the paper, respectively. By
and large, the information that ¯gures A3¡8 and A9¡14 contain reinforce the discussion we
present in the paper for ¯gures 1 and 2. That is, the 95 percent con¯dence intervals of ¯gures
A3 ¡ 8 show that the identi¯cation matters for inference about R1 and R6. These ¯gures
are in line with ¯gure 1 because support for the restriction of R6 exists only when ¸CA;I;0
is close to negative one. The 95 percent con¯dence ellipses of ¯gures A9 ¡ 14 provide more
evidence to back our conclusion that minor changes to the identi¯cation leads to di®erent
views of the e±cacy of the intertemporal, small open economy model.
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Table A1. Reduced Form Univariate Regressions

¢CAt = b0 + b1¢It + Àt

Glick and Rogo® Results
Sample Period: 1975 ¡ 1990

Canada France Germany Italy Japan U.K. U.S.

b̂1 -0.30 -0.42 -0.23 -0.59 -0.37 -0.60 -0.20
(0:10) (0:12) (0:19) (0:10) (0:10) (0:10) (0:09)

R2 0.38 0.47 0.10 0.71 0.49 0.72 0.27

D¡W 1.88 1.42 1.60 1.19 1.54 1.81 1.18

Results Using Quarterly Data
Sample Period: 1975:1 ¡ 1995:4

Canada France Germany Italy Japan U.K. U.S.

b̂1 -0.37 -0.37 -0.33 -0.43 -0.20 -0.54 -0.11
(0:08) (0:09) (0:09) (0:09) (0:08) (0:11) (0:04)
[0.07] [0.09] [0.15] [0.11] [0.06] [0.09] [0.04]

R2 0.20 0.17 0.13 0.22 0.07 0.22 0.09

D¡W 2.34 2.46 2.50 2.36 1.64 2.72 2.20

The Glick and Rogo® (1995) estimates, taken from the bottom panel of their table 1, are
based on annual data. We use OLS to compute estimates of the slope coe±cient b1 as do
Glick and Rogo®. OLS standard errors appear in parenthesis. The values in brackets are
Newey-West corrected standard errors. The Newey-West standard errors are constructed
using an automatic lag length adjustment.
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Table A2.1 Reduced Form VARs
Sample Period: 1975:1 ¡ 1995:4

Coe±cient Sums and Tests of Predictive Content

Canada France Germany Italy Japan U.K. U.S.

A¢I; ¢I(1) 0.07 0.31 -0.16 0.00 0.46 0.18 -0.09
(0.23) (0.20) (0.28) (0.22) (0.14) (0.30) (0.24)

A¢I; ¢CA(1) 0.16 0.30 -0.28 0.05 -0.03 -0.02 -0.26
(0.37) (0.34) (0.33) (0.30) (0.22) (0.36) (0.72)

A¢CA; ¢I(1) -0.02 -0.10 0.14 -0.26 -0.02 -0.93 -0.13
(0.19) (0.17) (0.26) (0.22) (0.12) (0.32) (0.09)

A¢CA; ¢CA(1) -0.42 -0.51 0.04 -0.26 0.37 -1.12 -0.04
(0.30) (0.29) (0.31) (0.29) (0.18) (0.38) (0.26)

¢I Regression : R2 0.09 0.11 0.15 0.15 0.36 0.03 0.09
[0.44] [0.34] [0.12] [0.14] [0.00] [0.95] [0.44]

¢CA Regression : R2 0.11 0.19 0.07 0.06 0.10 0.20 0.21
[0.31] [0.04] [0.66] [0.76] [0.42] [0.03] [0.02]

Wald Test: ¢CA! ¢I : 2.77 3.46 7.40 6.73 5.81 0.49 0.36
[0.60] [0.48] [0.12] [0.15] [0.21] [0.97] [0.99]

Wald Test: ¢I ! ¢CA : 6.75 11.05 1.29 3.72 1.37 10.46 9.51
[0.15] [0.03] [0.86] [0.45] [0.85] [0.03] [0.05]

Standard errors appear in parenthesis. The values in brackets are p-values. The p-values
that appear below the R2s represent signi¯cance levels for the LM test statistic T £ R2.
These statistics are asymptotically distributed Â2 with eight degrees of freedom. The Wald
statistics that tests the predictive power of either ¢I for ¢CA or ¢CA for ¢I possess a Â2
distribution with four degrees of freedom asymptotically.
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Table A2.2 Reduced Form VARs
Sample Period: 1975:1 ¡ 1995:4

Forecast Errors

Canada France Germany Italy Japan U.K. U.S.

¾("¢I) 4.40 21.64 22.25 10716.18 1639.38 4.22 58.04
(1.03) (5.06) (5.20) (2502.97) (382.91) (0.98) (13.56)

¾("¢CA) 3.60 18.40 20.75 10332.76 1312.30 4.45 21.05
(0.84) (4.30) (4.85) (2413.41) (306.51) (1.04) (4.92)

Corr("¢I ; "¢CA) -0.44 -0.40 -0.46 -0.49 -0.23 -0.51 -0.35
(0.27) (0.28) (0.26) (0.25) (0.31) (0.24) (0.29)

Shocks to Stochastic Trends

Canada France Germany Italy Japan U.K. U.S.

¾("I) 4.54 28.79 21.32 10409.73 3096.24 5.26 56.84
(1.49) (10.80) (5.28) (3741.63) (1279.11) (2.71) (17.22)

¾("CA) 2.54 12.86 19.79 9369.82 2104.67 3.85 24.11
(0.67) (3.01) (8.67) (2269.92) (889.18) (0.51) (10.81)

Corr("I ; "CA) -0.37 -0.39 -0.54 -0.63 -0.30 -0.88 -0.65
(0.38) (0.45) (0.35) (0.26) (0.45) (0.28) (0.26)

Standard errors appear in parenthesis.
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Table A3. Unit Root Tests
Sample Period: 1975:1 ¡ 1995:4

Investment
Canada France Germany Italy Japan U.K. U.S.

DF-GLS t¡ratio ¡2:64 ¡1:80 ¡1:48 ¡3:88 ¡2:56 ¡1:82 ¡3:37
Lag Length 1 1 1 2 3 1 1

ADF t¡ratio ¡2:78 ¡2:40 ¡1:67 ¡4:07 ¡1:99 ¡2:11 ¡3:90
Lag Length 1 2 0 2 3 0 3

ADF AR Root 0.85 0.90 0.93 0.74 0.96 0.90 0.73
95% CI: LL 0.73 0.79 0.89 ¡¡ 0.85 0.83 ¡¡
95% CI: UL 1.04 1.05 1.06 0.90 1.05 1.05 0.93

Current Account
Canada France Germany Italy Japan U.K. U.S.

DF-GLS t¡ratio ¡1:72 ¡2:81 ¡1:41 ¡1:80 ¡2:41 ¡2:15 ¡1:88
Lag Length 1 1 1 1 2 1 1

ADF t¡ratio ¡2:00 ¡3:41 ¡1:86 ¡2:30 ¡2:39 ¡2:57 ¡1:84
Lag Length 0 0 4 0 2 1 3

ADF AR Root 0.87 0.75 0.91 0.86 0.91 0.85 0.92
95% CI: LL 0.85 0.61 0.86 0.80 0.79 0.76 0.87
95% CI: UL 1.05 1.02 1.05 1.05 1.05 1.04 1.05

The asymptotic ten percent, ¯ve percent, and one percent critical values for the GLS-DF
(ADF) t¡ratio equal ¡2:57 (¡3:13), ¡2:89 (¡3:41), and ¡3:48 (¡3:96), respectively.
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Table A4.1 Structural VARs
Sample Period: 1975:1 ¡ 1995:4

R1 : LRCA;I = 0
France Germany Italy Japan U.K. U.S.

¸I;CA;0 -0.64 -0.37 -0.70 -0.33 -0.97 -1.68
(0.30) (0.24) (0.19) (0.34) (0.23) (0.58)

¸CA;I;0 0.15 -0.12 0.26 0.03 1.15 0.12
(0.28) (0.21) (0.25) (0.22) (0.71) (0.09)

LRI;CA -0.88 -0.58 -0.70 -0.44 -1.21 -1.54
(0.66) (0.32) (0.25) (0.54) (0.20) (0.59)

Wald Statistic 11.64 1.48 2.86 6.80 3.69 7.24
[0.04] [0.92] [0.72] [0.24] [0.59] [0.20]

R2 : LRI;CA = 0
France Germany Italy Japan U.K. U.S.

¸I;CA;0 -0.20 0.30 -0.04 0.05 0.01 0.25
(0.21) (0.40) (0.24) (0.36) (0.17) (0.72)

¸CA;I;0 -0.21 -0.61 -0.44 -0.21 -0.54 -0.15
(0.17) (0.24) (0.20) (0.23) (0.17) (0.09)

LRCA;I -0.18 -0.50 -0.57 -0.20 -0.65 -0.28
(0.18) (0.21) (0.19) (0.26) (0.12) (0.22)

Wald Statistic 14.40 8.13 9.96 2.31 24.24 13.94
[0.01] [0.15] [0.08] [0.80] [0.00] [0.02]

In the top and bottom panels, standard errors appear in parenthesis and the brackets contain
p-values. The Wald statistic and p-values in the top and bottom panel are based on the
hypothesis ¸CA;I;j = 0; j = 0; : : : ; 4, and ¯ve degrees of freedom.
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Table A4.2 Structural VARs
Sample Period: 1975:1 ¡ 1995:4

R3 : ¸I;CA;0 = 0
France Germany Italy Japan U.K. U.S.

¸CA;I;0 -0.34 -0.43 -0.47 -0.18 -0.53 -0.12
(0.08) (0.09) (0.09) (0.08) (0.10) (0.04)

LRI;CA 0.44 -0.24 0.05 -0.06 -0.02 -0.24
(0.58) (0.26) (0.31) (0.41) (0.43) (0.63)

LRCA;I -0.24 -0.32 -0.59 -0.18 -0.64 -0.25
(0.10) (0.20) (0.14) (0.18) (0.10) (0.08)

Wald Statistic 29.69 23.80 31.50 6.21 43.12 22.30
[0.00] [0.00] [0.00] [0.29] [0.00] [0.00]

R4 : ¸CA;I;0 = 0
France Germany Italy Japan U.K. U.S.

¸I;CA;0 -0.48 -0.49 -0.50 -0.29 -0.48 -0.96
(0.12) (0.10) (0.10) (0.13) (0.09) (0.28)

LRI;CA -0.56 -0.69 -0.52 -0.39 -0.82 -1.04
(0.43) (0.23) (0.21) (0.40) (0.19) (0.53)

LRCA;I -0.07 0.15 -0.21 -0.02 -0.44 -0.13
(0.11) (0.30) (0.14) (0.18) (0.11) (0.07)

Wald Statistic 11.05 1.29 3.72 1.37 10.46 9.52
[0.03] [0.86] [0.44] [0.85] [0.03] [0.05]

In the top and bottom panels, standard errors appear in parenthesis and the brackets contain
p-values. The Wald statistic and p-values in the top (bottom) panel are based on the
hypothesis ¸CA;I;j = 0; j = 0; : : : ; 4 (j = 1; : : : ; 4), and ¯ve (four) degrees of freedom.
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Table A4.3 Structural VARs
Sample Period: 1975:1 ¡ 1995:4

R5 : ¸CA;I;0 = ¡1

France Germany Italy Japan U.K. U.S.

¸I;CA;0 1.73 1.29 1.15 1.79 0.80 151.88
(0.61) (0.47) (0.43) (0.52) (0.31) (985.90)

LRI;CA 5.75 0.71 2.16 2.16 26.96 -8.37
(6.35) (0.74) (2.20) (1.85) (254.35) (5.93)

LRCA;I -0.66 -0.82 -1.04 -0.83 -0.82 -0.93
(0.17) (0.20) (0.20) (0.31) (0.10) (0.42)

Wald Statistic 2.91 12.77 7.96 10.37 10.68 11.22
[0.57] [0.01] [0.09] [0.03] [0.03] [0.02]

R6 : LRCA;I = ¡1

France Germany Italy Japan U.K. U.S.

¸I;CA;0 4.55 2.49 1.00 2.49 3.02 -132.86
(4.87) (2.55) (0.76) (2.06) (3.80) (1836.17)

¸CA;I;0 -1.42 -1.26 -0.95 -1.22 -1.49 -1.10
(0.38) (0.37) (0.21) (0.54) (0.41) (0.79)

LRI;CA 34.23 1.38 1.78 3.09 -3.18 -7.48
(192.75) (1.78) (2.30) (3.97) (2.14) (7.08)

Wald Statistic 2.94 9.61 8.37 7.89 9.09 9.20
[0.71] [0.09] [0.09] [0.16] [0.10] [0.10]

In the top and bottom panels, standard errors appear in parenthesis and the brackets contain
p-values. The Wald statistic and p-values in the top (bottom) panel are based on the
hypothesis ¸CA;I;j = 0; j = 1; : : : ; 4 (j = 0; : : : ; 4), and four (¯ve) degrees of freedom.

A.18



Table A5.1 FEVD under R1 : LRCA;I = 0
Investment Response to the World Shock

Forecast Horizon France Germany Italy Japan U.K. U.S.

0 70.96 88.30 56.76 93.00 22.62 65.60
(22.19) (16.95) (19.37) (17.18) (15.92) (18.12)

2 70.89 88.06 56.76 93.00 17.42 65.40
(22:36) (17:25) (19:37) (17:19) (15:11) (18:22)

4 70.89 88.19 56.76 93.00 16.73 65.40
(22:34) (17:29) (19:37) (17:19) (14:43) (18:22)

12 71.09 88.33 56.76 93.00 16.87 65.31
(22:25) (17:33) (19:37) (17:19) (13:68) (18:25)

24 71.15 88.40 56.76 93.00 16.93 65.29
(22:16) (17:35) (19:37) (17:19) (13:59) (18:25)

Current Account Response to the Country-Speci¯c Shock
Forecast Horizon France Germany Italy Japan U.K. U.S.

0 97.69 98.43 95.86 99.88 73.25 92.75
(11.37) (8.42) (9.16) (11.23) (15.94) (10.24)

2 97.88 98.11 95.86 99.88 75.30 93.34
(11:27) (8:69) (9:16) (11:23) (16:32) (9:86)

4 97.82 98.14 95.86 99.88 76.02 93.30
(11:39) (8:68) (9:16) (11:23) (15:78) (10:03)

12 97.71 98.12 95.86 99.88 77.74 93.36
(11:07) (8:70) (9:16) (11:23) (14:02) (10:06)

24 97.68 98.13 95.86 99.88 78.34 93.37
(10:99) (8:70) (9:16) (11:23) (13:59) (10:38)

In the top and bottom panels, small sample empirical standard errors appear in parenthesis.
We generate 1000 replications of the SVAR to compute the empirical standard errors.
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Table A5.2 FEVD under R2 : LRI;CA = 0

Investment Response to the World Shock
Forecast Horizon France Germany Italy Japan U.K. U.S.

0 97.29 95.43 99.87 99.86 99.99 99.30
(6.74) (11.72) (6.19) (9.26) (3.41) (6.91)

2 97.27 95.54 99.87 99.86 99.60 99.32
(6:75) (11:81) (6:19) (9:26) (3:72) (6:89)

4 97.26 95.44 99.87 99.86 99.38 99.32
(6:75) (11:89) (6:19) (9:26) (3:97) (6:90)

12 97.30 95.37 99.87 99.86 98.15 99.33
(6:69) (11:76) (6:19) (9:27) (4:20) (6:90)

24 97.32 95.33 99.87 99.86 99.07 99.33
(6:66) (11:58) (6:19) (9:27) (4:26) (6:90)

Current Account Response to the Country-Speci¯c Shock
Forecast Horizon France Germany Italy Japan U.K. U.S.

0 93.80 59.47 78.97 92.84 73.58 82.01
(11.35) (23.06) (17.09) (15.67) (14.92) (16.31)

2 93.53 58.20 78.97 92.84 69.45 81.69
(11:74) (23:39) (17:09) (15:67) (16:81) (16:73)

4 93.66 58.38 78.97 92.84 68.54 81.47
(11:83) (23:42) (17:10) (15:68) (17:48) (17:20)

12 93.91 58.29 78.97 92.84 67.80 81.29
(11:90) (23:54) (17:10) (15:68) (17:90) (17:51)

24 93.99 58.30 78.97 92.84 67.56 81.24
(11:92) (23:50) (17:09) (15:69) (18:06) (17:62)

In the top and bottom panels, small sample empirical standard errors appear in parenthesis.
We generate 1000 replications of the SVAR to compute the empirical standard errors.
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Table A5.3 FEVD under R6 : LRCA;I = ¡1

Investment Response to the World Shock
Forecast Horizon France Germany Italy Japan U.K. U.S.

0 34.49 49.92 75.45 36.28 47.58 10.78
(17.18) (21.96) (18.83) (23.62) (20.99) (15.96)

2 35.59 49.96 75.45 36.29 68.06 63.56
(19:09) (22:33) (18:86) (23:59) (18:46) (25:19)

4 37.40 43.37 75.45 36.28 86.30 100.00
(22:84) (23:25) (18:50) (24:04) (16:91) (34:85)

12 51.52 49.15 75.45 36.26 95.96 100.00
(24:42) (21:98) (17:42) (25:50) (12:67) (36:02)

24 85.50 49.06 75.45 36.25 94.51 100.00
(22:61) (20:70) (16:40) (25:75) (11:06) (36:62)

Current Account Response to the Country-Speci¯c Shock
Forecast Horizon France Germany Italy Japan U.K. U.S.

0 4.38 9.30 26.42 16.09 31.07 00.04
(9.42) (14.89) (18.35) (19.62) (12.96) (8.12)

2 4.34 8.40 26.42 16.08 9.14 00.02
(9:36) (14:48) (18:35) (19:75) (11:78) (16:50)

4 5.15 8.57 26.41 16.06 6.61 0.00
(10:03) (14:80) (18:35) (20:02) (11:99) (23:32)

12 16.82 8.54 26.41 16.05 5.56 0.00
(14:34) (15:54) (18:35) (20:98) (12:42) (28:01)

24 6.02 8.54 26.41 16.05 5.52 0.00
(15:34) (15:63) (18:32) (21:04) (12:83) (28:51)

In the top and bottom panels, small sample empirical standard errors appear in parenthesis.
We generate 1000 replications of the SVAR to compute the empirical standard errors.
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