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Abstract

This paper investigates the possibilities for satisfaction of both the ex-ante and ex-post Pareto

principles in a general model in which neither individual nor social preferences necessarily

satisfy the Expected Utility Hypothesis. If probabilities are subjective and allowed to vary,

three different impossibility results are presented. If probabilities are ‘objective’ (identical

across individuals and the observer), necessary and sufficient conditions on individual and

social value functions are found (Theorem 4). The resulting individual value functions are

consistent not only with Subjective Expected Utility Theory, but also with some versions

of Prospect Theory, Subjectively Weighted Utility Theory and Anticipated Utility Theory.

Social preferences are Weighted Generalized Utilitarian and, in the case in which individ-

ual preferences satisfy the Generalized Bernoulli Hypothesis, they are Weighted Utilitarian.

The objective-probability results for social preferences cast a new light on Harsanyi’s Social

Aggregation Theorem, which assumes that both individual and social preferences satisfy the

Expected Utility Hypothesis.



When a society is faced with the problem of ranking uncertain prospects, the Pareto principle

can be applied in two different ways. The ex-ante principle requires the existence of a ranking

of individual values for the prospects and uses it to compare them. The ex-post principle

requires the existence of individual rankings of consequences in each possible state, and uses

these ex-post rankings to compare the prospects.1

Harsanyi’s Social Aggregation Theorem [1955, 1977] shows that, when individuals agree

on probabilities for contingent social states and each individual and a social observer have

preferences that satisfy the Expected Utility Hypothesis (von Neumann and Morgenstern

[1947]), the ex-ante principle implies that the observer’s preferences must be Weighted Gen-

eralized Utilitarian. That is, the observer must have a value function that is ordinally equiv-

alent to the weighted sum of individual transformed utilities. If, in addition, the individual

ex-ante utilities satisfy the Bernoulli Hypothesis (Arrow [1972]), which makes each person’s

ex-ante utility equal to the expected value of von-Neumann – Morgenstern utilities rather

than an increasing transform of it, Weighted Utilitarianism results.2 The original theorem

employed lotteries as social alternatives with fixed utilities in the various states. Some of

the subsequent work (for example, Blackorby, Donaldson and Weymark [1998]) has proved

the theorem in models in which probabilities are identical across individuals and utilities are

state-contingent.

If, however, individual probabilities are subjective rather than ‘objective’ as above and

individuals are sufficiently diverse in their beliefs or in their utilities, the social observer

cannot have preferences that satisfy ex-ante welfarism. This paradox has been investigated

by Broome [1991], Hammond [1981, 1983] and Mongin [1995]. Mongin employs the Bayesian

axiomatization of Savage [1954]. Individual diversity is formalized in terms of either affinely

independent subjective probabilities or affinely independent utility functions on the conse-

quence set.

Mongin [1998] exploits the observation that these impossibility proofs depend critically

on Savage’s postulates of state independence. In Savage’s model, all consequences are avail-

able in all states and their utility values do not depend on the state that is realized. When

utilities are state-dependent, a possibility emerges. This resolution of the paradox is unim-

pressive, however, because it takes the edge off the Bayesian doctrine: subjective probabilities

are known to be indeterminate in the pure state-dependent model of subjective expected util-

ity, and subjective probability is, of course, what Bayesianism is about. When restrictions

are added to the pure state-dependent model to reinstate the uniqueness of each person’s

1 See Hammond [1981, 1983].
2 See Blackorby, Bossert and Donaldson [1998], Blackorby, Donaldson and Weymark [1980, 1990, 1998ab],

Bossert and Weymark [1996], Broome [1990, 1991], Coulhon and Mongin [1989], De Meyer and Mongin
[1995], Fishburn [1984], Hammond [1981, 1983], Mongin [1995, 1998], Mongin and d’Aspremont [1997],
Roemer [1996], Sen [1976] and Weymark [1991, 1994].
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subjective probabilities, the impossibility reappears, albeit in a more complex form than in

the Savage model.

In this paper, we do not pursue state-dependence, but take the crucial step of abandoning

the Expected Utility Hypothesis, a suggestion that has been made by Diamond [1967] and

Sen [1970] in the course of criticizing Harsanyi. Each person is assumed to have a continuous

ex-ante value function which depends on probabilities and state-contingent utility levels.

These functions are assumed to satisfy several sensitivity properties but, beyond that, no

structure is imposed on them. We assume that the observer has a value function that satisfies

State-Contingent Utility Aggregation, our version of the ex-post Pareto principle, and Value

Aggregation, our version of the ex-ante principle. State-Contingent Utility Aggregation

requires the observer’s utility level in any state to be a continuous and increasing function

of individual utilities in that state. Value Aggregation requires the observer’s value function

to be a continuous and increasing function of individual (ex-ante) values. We assume that

individual state-contingent utility levels can take on any value in an interval which can be

different for each person and each state.

In Section 3, probabilities are subjective and this leads to several impossibility theorems.

Theorems 1 and 2 show that the observer’s preferences cannot simultaneously satisfy State-

Contingent Utility Aggregation, Value Aggregation and either Equal-Utility Probability In-

dependence or Probability Aggregation. Equal-Utility Probability Independence requires

probabilities not to matter when utility payoffs are the same in all states and Probability

Aggregation requires the observer’s probabilities to be independent of individual utility lev-

els. In both theorems, each individual’s subjective probabilities are allowed to vary across

a set of possible values. This assumption is dispensed with in Theorem 3. Without using

the expected-utility assumption that is normally part of such a proof, it presents a further

impossibility when probabilities are subjective and fixed and it is not the case that all prob-

abilities, including the observer’s, are the same. Theorem 3 appeals to the Betting Property,

an axiom that is related to Machina and Schmeidler’s [1992] Probabilistic Sophistication.

Section 4 considers the case of ‘objective’ probabilities which are common to all individ-

uals and the observer. In this case, we characterize both individual and social preferences

when State-Contingent Utility Aggregation and Value Aggregation are satisfied. The result,

which is presented in Theorem 4, shows that individual and social value functions must be

very similar, but they do not have to satisfy the Expected Utility Hypothesis. Surprisingly,

however, Harsanyi’s result about Generalized Utilitarianism is preserved. If, in addition,

a generalization of the Bernoulli Hypothesis is imposed on the resulting value functions,

Weighted Utilitarianism results.

Our two basic assumptions—Value Aggregation and State-Contingent Utility Aggre-

gation—together require ex-ante/ex-post consistency. In the case of social aggregation theo-

rems that employ the Harsanyi-style of assumptions, ex-ante welfarism and the assumption
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that all individuals and the social observer have preferences that satisfy the Expected Utility

Hypothesis automatically imply ex-post welfarism. By contrast, we assume both ex-ante and

ex-post welfarism and require consistency.

1. Individuals

Suppose that X , a subset of a Euclidean vector space, is a set of social alternatives, N =

{1, . . . , n} is a set of individuals with n ≥ 2 and M = {1, . . . , m} is a set of states of nature

with m ≥ 2. For each i ∈ N , j ∈ M , U i
j : X −→ R is person i’s utility function. In state j

alternative xj ∈ Xj ⊆ X is realized and person i’s utility payoff is ui
j = U i

j(xj). We define

ui = (ui
1, . . . , u

i
m) and, if utilities are the same in each state with ui

j = u for all j ∈ M , we

write uc = u1m = (u, . . . , u). U i
j = U i

j(Xj) is the image of U i
j and we define U i = U i

1× . . .U i
m

for all i ∈ N and Uj = U1
j × . . .×Un

j for all j ∈ M . The set of feasible utility vectors for all

n individuals is U = {(u1, . . . ,un) | ∃(x1, . . . , xm) ∈ X1 × . . . × Xm 3, ∀i ∈ N, j ∈ M, ui
j =

U i
j(xj)}.

We make use of several different assumptions about the set U in our four theorems.

Domain Assumption A: There exists ξ = (ξ1, . . . , ξn) ∈ Rn such that, for all i ∈ N ,

j ∈ M , U i
j(xj) = ξi and (ξ11m, . . . , ξn1m) is an interior point of U .

Domain Assumption B: For all i ∈ N , j, k ∈ M , U i
j = U i

k.

Domain Assumption C: Domain Assumption B holds, for all i ∈ N , j ∈ M , U i
j is a

nondegenerate interval and U =
∏n

i=1

∏m
j=1 U i

j .

Domain assumption A, which is used in Theorems 1 and 3, is the least demanding of the

three. It requires the existence of some (x1, . . . , xn) such that each person’s utility outcome is

the same in each state. Because the vector ξ is assumed to be in the interior of U , all n-person

utility vectors in a neighbourhood of (ξ11m, . . . , ξn1m) are also feasible. Domain Assumption

B, which is required for Theorem 2, makes the set of feasible utility outcomes independent of

state for each individual. It is satisfied if utility functions are state-independent and Xj = X

for all j ∈ M . Domain Assumption C, which includes B, is required for Theorem 4 and it

ensures that Gorman’s theorem can be applied. It is trivially satisfied if X is the set of

allocations in a private-goods economy and individual utility functions are continuous and

self-interested.

Person i’s subjective probability for state j is pi
j and his or her vector of subjective

probabilities is pi = (pi
1, . . . , p

i
m), pi ∈ S = {π ∈ Rm

++ |
∑m

j=1 πj = 1}.3 Probabilities may

3 We assume that all subjective probabilities are feasible, but our results hold on more restrictive domains.
What is important is that any individual’s probabilities are independent of others’ probabilities.
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also be described by the vector p̃i := (pi
1, . . . , p

i
m−1), p̃i ∈ S̃ = {π ∈ Rm−1

++ |
∑m−1

j=1 πj <

1}. A prospect for individual i is the vector (pi,ui) and a social prospect is the vector

(p1,u1, . . . ,pn,un).

Person i ranks prospects with the value function V i:S × U i −→ R where

vi = V i(pi,ui). (1.1)

Decision theory suggests several restrictions that V i may satisfy:

Continuity in Prospects: V i is continuous;

Monotonicity in Probabilities: For all ui ∈ U i, all p̂i, p̌i ∈ S and for all k, l ∈
{1, . . . , m}, if ui

k > ui
l, p̂i

j = p̌i
j for all j ∈ {1, . . . , m} \ {k, l}, p̂i

k > p̌i
k (and, therefore,

p̂i
l < p̌i

l), then V i(p̂i,ui) > V i(p̌i,ui);

Betting Property: For all pi ∈ S, all ui
j ∈ U i

k, ui
l ∈ U i

k, (u, . . . , u) ∈ M \ {k, l} such that

ui
k > ui

l, if pi
k > pi

l, then

V i(pi, u, . . . , ui
k, . . . , u

i
l, . . . , u) > V i(pi, u, . . . , ui

l , . . . , u
i
k, . . . , u). (1.2)

A reasonable property in addition to the above requires V i to be increasing in utility

levels. Because it is not needed for our theorems and is implied by other axioms, we do not

include it. Continuity in Prospects and Monotonicity in Probabilities together imply

Equal-Utility Probability Independence (EUPI): For all uc ∈ U i, V i(·,uc) is a con-

stant function.

Because EUPI is satisfied, without loss of generality we normalize V i so that

V i(p,uc) = u (1.3)

for all p ∈ S and all uc ∈ U i.

Our notions of a prospect and a value function for i constitute a reduced form for several

decision-theoretic models at the same time. It is easy to check that ‘objective’ Expected

Utility Theory as well as some more recent constructions such as Rank-Dependent Utility

Theory (RDUT)4 satisfy all the conditions except for the Betting Property. Subjective

Expected Utility Theory (SEUT)5, as well as some recent nonlinear contributions involving

subjective probabilities, can be seen to satisfy all of the assumptions except Monotonicity

in Probabilities. Notice that this assumption is a particular application of Monotonicity

4 See Quiggin [1982].
5 See Savage [1954], for example.
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with Respect to First-Order Stochastic Dominance. The Betting Property is satisfied by a

number of non-expected utility constructions and is related to Probabilistic Sophistication in

Machina and Schmeidler [1992]. Conceptually, it originates in Ramsey’s method of eliciting

subjective probabilities from betting attitudes.

2. The Observer

The observer compares social prospects, (p1,u1, . . . ,pn,un) according to a social value func-

tion φ : S × U1 × . . . ×S × Un (=: D) −→ R with image

v0 = φ(p1,u1, . . . ,pn,un). (2.1)

Without loss of generality, it is always possible to write φ as

φ(p1,u1, . . . ,pn,un) = V 0(p0,u0) = V 0(p0
1, . . . , p

0
m, u0

1, . . . , u
0
m) (2.2)

with

p0 = P̃ 0(p1,u1, . . . ,pn,un) (2.3)

and

u0 = Ũ0(p1,u1, . . . ,pn,un), (2.4)

where V 0:S0 ×U0 −→ R, P̃ 0:D −→ S , Ũ0:D −→ Rm, S0 is the image of P̃ 0 and U0 is the

image of Ũ0.

Our first condition retains the general idea of the ex-post approach without relying on

any specific theory such as SEUT.

State-Contingent Utility Aggregation: There exists a continuous and increasing func-

tion U0:∪m
j=1Uj −→ R such that, for all j ∈ {1, . . . , m} and all (p1,u1, . . . ,pn,un)

∈ D,

u0 = Ũ0(p1,u1, . . . ,pn,un) =
(
U0(u1

1, . . . , u
n
1 ), . . . , U0(u1

m, . . . , un
m)

)
. (2.5)

This condition states that the observer assesses state-contingent vectors of utility levels in a

state-independent way. As the definition of V i indicates, our framework is compatible with

state-dependent decision theories (such as state-dependent SEUT) at the individual level,

but such flexibility is absent at the observer’s level.

Conditions on probability aggregation that are roughly similar to the Pareto condition

have sometimes been envisaged in the literature.6 However, the ex-post school of welfare

economics is usually agnostic about the origin of social probabilities. The impossibility

6 See Genest and Zidek [1986] and Section 2 in Mongin [1995].
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result of Section 3 can be made independent of their mode of formation if one is suspicious

of any particular probability aggregation axiom, and the positive results of Section 4 take the

social probability, p0, as well as the individual probabilities, (p1, . . . ,pn), to be exogenously

determined.

Welfare economics has also followed an altogether different approach from that implied

by State-Contingent Utility Aggregation. In contrast with the ex-post theorists, those of

the ex-ante school apply the Strong Pareto Principle directly to the individual evaluations

of prospects. The next condition retains the guiding idea of the ex-ante approach without

adhering to any specific decision-theoretic hypothesis. Let Mi be the image of V i.

Value Aggregation: There exists a continuous and increasing function W :M1 × . . . ×
Mn −→ R such that

φ(p1,u1, . . . ,pn,un) = W (v1, . . . , vn) = W
(
V 1(p1,u1), . . . , V n(pn,un)

)
. (2.6)

If a social value function satisfies State-Contingent Utility Aggregation and Value Ag-

gregation, we call it consistent for the reasons given in the introduction. In parallel with

earlier investigations, we now enquire whether there exists a consistent social value function.

3. The Impossibility of Consistent Social Aggregation When Subjective Proba-

bilities Can Differ

This section is divided into three subsections, in each of which a single additional assumption

is placed on the value function of the observer. The first subsection imposes Equal-Utility

Probability Independence, the second requires the probabilities of the observer to depend

only upon the probabilities of the agents and the third requires the Betting Property to hold

for the observer. Each of these assumptions leads to an impossibility if consistency is also

required. These results lead us to abandon the idea of independent subjective probabilities

in Section 4.

3.1. Equal-Utility Probability Independence for the Observer

We begin this subsection by imposing Equal-Utility Probability Independence on the ob-

server’s value function.

Equal-Utility Probability Independence for the Observer: V 0(·,u0
c) is a constant

function for all u0
c ∈ U0.

Theorem 1 shows that consistency is impossible when this axiom is satisfied.
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Theorem 1: Suppose that Domain Assumption A is satisfied. If individual value functions

satisfy Continuity and Monotonicity in Probabilities, there is no social value function that

satisfies Equal-Utility Probability Independence for the Observer, State-Contingent Utility

Aggregation and Value Aggregation.

Proof: Choose (ξ1, . . . , ξn) as in Domain Assumption A. There exists η > 0 such that

U0(ξ1 + η, ξ2, . . . , ξn) > U0(ξ1, ξ2, . . . , ξn),

U0(ξ1, ξ2 + η, . . . , ξn) > U0(ξ1, ξ2, . . . , ξn),

...

U0(ξ1, ξ2, . . . , ξn + η) > U0(ξ1, ξ2, . . . , ξn).

(3.1)

Let ȳ be the smallest value on the left side of (3.1) and pick ū0 so that ȳ > ū0 > U0(ξ1, ξ2, . . . , ξn).

Because U0 is continuous and increasing there exist ε1, . . . , εn > 0 such that

ū0 = U0(ξ1 + ε1, ξ2, . . . , ξn)

= U0(ξ1, ξ2 + ε2, . . . , ξn)

...

= U0(ξ1, ξ2, . . . , ξn + εn).

(3.2)

First suppose that 2 ≤ m ≤ n. Given (p1, . . . ,pn) construct social prospect ẑ =

(p1, û1, . . . ,pn, ûn) with

û1 = (ξ1 + ε1, ξ1, . . . , ξ1)

...

ûm = (ξm, . . . , ξm, ξm + εm)

(3.3)

and

ûi = (ξi, . . . , ξi) (3.4)

for m < i ≤ n. From (3.2) and (2.2)–(2.4) we see that

φ(ẑ) = V 0(P̃ 0(ẑ), ū0, . . . , ū0) (3.5)

and the EUPI property for the observer implies that φ(ẑ) is independent of the individual

probabilities. Now suppose that p1 is changed to p̂1 ∈ S where, for some k 6= 1,

p̂1
1 = p1

1 + π (3.6)

and

p̂1
k = p1

k − π (3.7)
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for some π > 0, and the rest of the probabilities are unchanged. Call this modified prospect

ẑ′. Monotonicity in Probabilities for V 1 and Value Aggregation imply that

φ(ẑ′) > φ(ẑ), (3.8)

a contradiction.

If n < m modify the prospect ẑ by adding as many of the elements of (ξ1 + ε1, ξ1, . . .) as

needed to û1 (repeating if necessary), as many of the elements of (ξ2, ξ2 + ε2, ξ2, . . .) to û2

(repeating if necessary), and so on, until each vector has dimension m and then proceed as

above.

3.2. Probability Aggregation

The impossibility result of Theorem 1 needed no detailed model of probability aggregation.

The following axiom is a defensible restriction on the value function of the observer.

Probability Aggregation: There exists a function P 0:Sn −→ S0 such that, for all

(p1,u1, . . . ,pn,un) ∈ D,

p0 = P̃ (p1,u1, . . . ,pn,un) = P 0(p1, . . . ,pn)

=
(
P 0

1 (p1, . . . ,pn), . . . , P 0
m(p1, . . . ,pn)

)
.

(3.9)

Thus, the observer’s probabilities depend only on individual probabilities, not on individual

utility levels. However, any component may depend on all of the individual probabilities.

This condition is weaker than the assumption which is sometimes made in the literature

that aggregate probabilities depend on individual probabilities, component by component.7

This axiom can be used, in conjunction with State-Contingent Utility Aggregation and Value

Aggregation, to produce another impossibility theorem.

Theorem 2: Suppose that Domain Assumption B is satisfied. If individual value functions

satisfy Continuity and Monotonicity In Probabilities, there is no social value function that

satisfies Probability Aggregation, State-Contingent Utility Aggregation and Value Aggrega-

tion.

7 See Genest and Zidek [1986] and Mongin [1997] for a criticism.
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Proof: If the value function of the observer satisfies EUPI we are done. By State-Contingent

Utility Aggregation and Probability Aggregation, P 0 must be sensitive to individual prob-

abilities. Suppose that EUPI does not hold for the observer. Then there exist p0, q0 ∈ S0

with p0 6= q0 and u0
c ∈ U0 such that

V 0(p0,u0
c) 6= V 0(q0,u0

c). (3.10)

Consequently, there exist (p1, . . . ,pn) and (q1, . . . ,qn) in Sn such that p0 = P 0(p1, . . . ,pn),

q0 = P 0(q1, . . . ,qn), and pi 6= qi for some i. Letting u0 = U0(y1, . . . , yn) and using Domain

Assumption B, this implies that

W
(
V 1(p1,y1

c), . . . , V
n(pn,yn

c )
)
6= W

(
V 1(q1,y1

c), . . . , V
n(qn,yn

c )
)

(3.11)

which contradicts EUPI for individuals, which follows from Continuity and Monotonicity in

Probabilities.

The notion that separate aggregation of individual utilities and individual probabilities

involve difficulties can be traced back to an early paper by Hylland and Zeckhauser [1979]

who, however, only considered SEUT for both the individuals and the observer.

3.3. The Betting Property for the Observer

In this subsection we assume that both individual probabilities and those of the observer

are fixed, and show that, if any two individual probabilities differ, a contradiction results.

The theorem statement makes use of the following condition.

Betting Property for the Observer: V 0 satisfies the Betting Property.

Theorem 3: Suppose that Domain Assumption A is satisfied and that p0 and (p1, . . . ,pn)

are fixed and that individual value functions satisfy Continuity and the Betting Property.

(i) If pi 6= ph for individuals i, h ∈ {1, . . . , n}, there is no social value function that

satisfies State-Contingent Utility Aggregation and Value Aggregation.

(ii) If there exists i ∈ {1, . . . , n} such that pi 6= p0, there is no social value function that

satisfies the Betting Property for the Observer, State-Contingent Utility Aggregation and

Value Aggregation.

9



Proof: (i) Without loss of generality, let i = 1, h = 2, p1
1 > p1

2, and p2
1 < p2

2. Take

(ξ1, . . . , ξn) as in the proof of Theorem 1 and let

ū0 = U0(ξ1 + ε1, ξ2, . . . , ξn) = U0(ξ1, ξ2 + ε2, . . . , ξn). (3.12)

Construct prospects z̃ = (p1, ũ1, . . . ,pn, ũn) and ž = (p1, ǔ1, . . . ,pn, ǔn) with

ũ1 = (ξ1 + ε1, ξ1, . . . , ξ1)

ũ2 = (ξ2, ξ2 + ε2, . . . , ξ2)
(3.13)

and

ũi = (ξi, . . . , ξi) (3.14)

for 2 < i ≤ n, and

ǔ1 = (ξ1, ξ1 + ε1, . . . , ξ1)

ǔ2 = (ξ2 + ε2, ξ2, . . . , ξ2)
(3.15)

and

ǔi = (ξi, . . . , ξi) (3.16)

for 2 < i ≤ n. The Betting Property for V i implies that

V 1(p1, ξ1 + ε1, ξ1, . . . , ξ1) > V 1(p1, ξ1, ξ1 + ε1, . . . , ξ1) (3.17)

and

V 2(p2, ξ2, ξ2 + ε2, ξ2, . . . , ξ2) > V 2(p2, ξ2 + ε2, ξ2, . . . , ξ2) (3.18)

so that Value Aggregation yields φ(z̃) > φ(ž). However, State-Contingent Utility Aggrega-

tion and (3.12) imply that

φ(z̃) = V 0(p0, U0(ξ1 + ε1, ξ2, . . . , ξn), U0(ξ1, ξ2 + ε2, . . . , ξn), . . . , U0(ξ1, ξ2, . . . , ξn))

= V 0(p0, U0(ξ1, ξ2 + ε2, . . . , ξn), U0(ξ1 + ε1, ξ2, . . . , ξn), . . . , U0(ξ1, ξ2, . . . , ξn))

= φ(ž),

(3.19)

a contradiction that establishes the first part of the theorem.

(ii) Now suppose that pi 6= p0 for some i ∈ {1, . . . , n}. Given (i), we need only consider the

case in which p1 = p2 = . . . = pn. Let p1
1 > p1

2 and p0
1 < p0

2 and construct the prospects

z̃ = (p1, ũ1, . . . ,pn, ũn) and ž = (p1, ǔ1, . . . ,pn, ǔn) with

ũ1 = (ξ1 + ε1, ξ1, . . . , ξ1) (3.20)

and

ũi = (ξi, . . . , ξi) (3.21)

for 2 ≤ i ≤ n, and

ǔ1 = (ξ1, ξ1 + ε1, . . . , ξ1) (3.22)
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and

ǔi = (ξi, . . . , ξi) (3.23)

for 2 ≤ i ≤ n. The Betting Property for V 1 and Value Aggregation imply that

φ(z̃)

= W
(
V 1(p1, ξ1 + ε1, ξ1, . . . , ξ1), . . . , V

i(pi, ξi . . . , ξi), . . .
)

> W (V 1(p1, ξ1, ξ1 + ε1, ξ1, . . . , ξ1), . . . , V
i(pi, ξi . . . , ξi), . . .)

= φ(ž).

(3.24)

However, State-Contingent Utility Aggregation and the Betting Property for the Observer

imply that

φ(ž) = V 0
(
p0, U0(ξ1, ξ2, . . . , ξn), U0(ξ1 + ε1, ξ2, . . . , ξn), U0(ξ1, ξ2, . . . , ξn), . . .

)

> V 0
(
p0, U0(ξ1 + ε1, ξ2, . . . , ξn), U0(ξ1, ξ2, . . . , ξn), U0(ξ1, ξ2, . . . , ξn), . . .

)

= φ(z̃),

(3.25)

a contradiction.

Observe that the decision-theoretic properties that have been used to derive an impos-

sibility are not the same when probabilities are allowed to vary and when they are fixed.

Monotonicity in Probabilities (in effect Stochastic Dominance) and Equal-Utility Probabil-

ity Independence for the Observer are needed in one case, and the Betting Property (for

individuals and the observer) in the other. This is how it should be. When probabilities

are allowed to vary, we are implicitly working with a lottery model, as in von-Neumann –

Morgenstern and in ‘objective’ non-expected-utility constructions, where the lotteries are

the objects of choice. When we fix probabilities and invoke the Betting Property, we are

implicitly working within a subjective-probability framework, as in Savage and in subjective

non-expected-utility constructions.

Theorem 3 implies that individuals’ and the observer’s probabilities must be the same

in order to avoid a contradiction. The consequences of the consistency hypothesis for indi-

viduals’ and the observer’s utility values when all probabilities coincide are addressed in the

following section.

Here we present a simple application of Theorem 3. Suppose that the individuals are

consumers endowed with continuous, selfish, and nonsatiable preferences on Rt
+, where t

is the number of commodities. Each consumer has one such preference for each state, so

that his or her preferences can be represented by a continuous, nonconstant utility function.

The observer is endowed with continuous preferences on the set of individual allocations

which are state-independent and are represented by a state-independent function. By further

endowing the consumers and the observer with subjective probabilities and value functions,
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we can define preferences over uncertain allocations and require an ex-ante version of the

Strong Pareto Principle. The Pareto-Indifference part generates the W function in our Value

Aggregation condition, while the increasingness property follows from the remaining part.

On the other hand, the ex-post version of the Strong Pareto Principle implies the State-

Contingent Utility Aggregation condition. Theorem 3 shows that there is no social-welfare

function that simultaneously satisfies both the ex-ante and ex-post requirements. In essence,

this is Theorem 2 in Hammond [1982] without the expected-utility assumption.

Theorem 3 may also be compared with other existing results, especially the impossibility

theorems of Mongin [1995]8 for Savage’s framework of SEUT. There, impossibilities are

derived not only for the Strong Pareto Principle, but also for the Weak Pareto Principle, and

even for Pareto Indifference alone. The later two conditions are shown to lead to dictatorial

social aggregation instead of a logical impossibility. The comparison is imperfect because

the flexibility required to prove these results in the framework of Savage can only be found

in the probability values and not in the utility values. Unlike in the present paper, the latter

typically do not range through an interval.

Disregarding the diversity of technical frameworks, two general observations appear to

be in order when Theorem 3 is compared with existing results. First, its proof exhibits

a structural feature that underlies all previously available proofs. At some stage in these

arguments, the ex-ante Pareto principle must be applied twice, once in a natural way when

the individuals agree on how to rank probabilities and utilities, and once in a less natural

way when they disagree on both rankings but this disagreement happens to cancel out. This

structural feature is illustrated by Example 3 in Mongin [1995] and recurs in the two-stage

division of our proof here. The other, more important observation is that impossibilities are

driven by much weaker decision-theoretic assumptions than one would have expected. The

impossibility of consistent social aggregation is a disturbingly robust conclusion.

4. Social Aggregation with ‘Objective’ Probabilities

In this section, we investigate social aggregation when all individuals and the observer have

probabilities that coincide. We refer to probabilities such as these as ‘objective’ and require

State-Contingent Utility Aggregation and Value Aggregation to hold for all such probabilities

and all vectors of individual utilities.

If pi = p0 = p for all i ∈ {1, . . . , n}, State-Contingent Utility Aggregation and Value

Aggregation together imply

V 0(p,u0) = V 0
(
p, U0(u1

1, . . . , u
n
1 ), . . . , U0(u1

m, . . . , un
m)

)

= W
(
V 1(p,u1), . . . , V n(p,un)

)
.

(4.1)

8 Propositions 5 and 7 in particular.
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Theorem 4 provides necessary and sufficient conditions for the observer’s preferences

to satisfy State-Contingent Utility Aggregation and Value Aggregation. In the theorem

statement,
o
= means ‘is ordinally equivalent to’.

Theorem 4: Suppose that Domain Assumption C is satisfied, pi = p0 = p for all

i ∈ {1, . . . , n} and individual value functions satisfy Continuity and Monotonicity in Proba-

bilities. V 0 satisfies State-Contingent Utility Aggregation and Value Aggregation if and only

if, for all (u1, . . .un) ∈ U:

vi = V i(p,ui) = gi−1
( m∑

j=1

aj(p)gi(ui
j)

)
(4.2)

for all i ∈ {1, . . . , n};

u0
j = U0(u1

j , . . . , u
n
j )

o
=

n∑

i=1

wig
i(ui

j) (4.3)

for all j ∈ {1, . . . , m};

W (v1, . . . , vn)
o
=

n∑

i=1

wig
i(vi); (4.4)

and

V 0(p,u0)
o
=

n∑

i=1

m∑

j=1

wiaj(p)gi(ui
j) (4.5)

where, for all j ∈ {1, . . . , m}, aj is continuous, aj(p) > 0 and
∑m

j=1 aj(p) = 1 for all p ∈ S,

and, for all i ∈ {1, . . . , n}, wi > 0,
∑n

i=1 wi = 1 and gi is continuous and increasing.

Proof: Consider the interior of U . Continuity of U0 and W imply that V 0 is continuous.

Conditional on p, (4.1) implies that the variables in each row and column of Table 2 are

separable from their complements.

u1
1 . . . u1

m

...
...

un
1 . . . un

m

Table 2
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Consequently, by Gorman’s overlapping theorem,9

V 0(p,u0) =
∗
V 0

( n∑

i=1

m∑

j=1

σi
j(p, ui

j),p

)
, (4.6)

where
∗
V 0 is continuous and increasing in its first argument and each σi

j is continuous and

increasing in its second argument.

Equation (4.6) implies that, for every p,
∑n

i=1 σi
j(p, ui

j) is ordinally equivalent to

U0(u1
j , . . . , u

n
j ) and, therefore, that

Fj

( n∑

i=1

σi
j(p, ui

j),p

)
= U0(ui

j , . . . , u
n
j ) (4.7)

where Fj is continuous and increasing in its first argument. Because (4.7) holds for all p, p

may be set equal to some arbitrary probability vector such as p̄ = (1/m, . . . , 1/m). Defining

σ̄i
j(·) = σi

j(p̄, ·) and F̄j(·) = Fj(·, p̄), (4.7) implies

F̄j

( n∑

i=1

σ̄i
j(u

i
j)

)
= U0(ui

j , . . . , u
n
j ). (4.8)

(4.7) and (4.8) together imply

Fj

( n∑

i=1

σi
j(p, ui

j),p

)
= F̄j

( n∑

i=1

σ̄i
j(u

i
j)

)
. (4.9)

Define zi
j = σ̄i

j(u
i
j) and σ̂i

j(p, zi
j) = σi

j(p, σ̄i−1

j (zi
j)) = σi

j(p, ui
j) to get

Fj

( n∑

i=1

σ̂i
j(p, zi

j),p

)
= F̄j

( n∑

i=1

zi
j

)
. (4.10)

This implies
n∑

i=1

σ̂i
j(p, zi

j) = Gj

( n∑

i=1

zi
j ,p

)
(4.11)

where Gj is continuous and increasing in its first argument. For each p, (4.11) is a Pexider

equation (Eichhorn [1978]) whose solution is

σ̂i
j(p, zi

j) = āj(p)zi
j + bi

j(p), (4.12)

which implies

σi
j(p, ui

j) = āj(p)σ̄i
j(u

i
j) + bi

j(p). (4.13)

9 See the appendix.
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āj(p) > 0 because σ̂i
j is increasing in its second argument and σ̄i

j is increasing. Given

equation (4.13), (4.6) can be rewritten as

V 0(p,u0) =
∗
V 0

( n∑

i=1

m∑

j=1

(
āj(p)σ̄i

j(u
i
j) + bi

j(p)
)
,p

)
. (4.14)

(4.8) implies

U0(ξ1, . . . , ξn) = F̄j

( n∑

i=1

σ̄i
j(ξi)

)
(4.15)

for all (ξ1, . . . , ξn) ∈ ∪m
j=1Uj . The right side of (4.15) is independent of j because the left

side is and, setting j = 1,

U0(ξ1, . . . , ξn) = F̄1

( n∑

i=1

σ̄i
1(ξi)

)
. (4.16)

Defining
∗
U = F̄1 and ḡi = σ̄i

1,

U0(ξ1, . . . , ξn) =
∗
U

( n∑

i=1

ḡi(ξi)

)
. (4.17)

(4.8) and (4.17) imply

F̄j

( n∑

i=1

σ̄i
j(ξi)

)
=

∗
U

( n∑

i=1

ḡi(ξi)

)
(4.18)

for each j. Defining yi = ḡi(ξi), σ̂i
j(yi) = σ̄i

j(ḡ
i−1

(yi)) = σ̄i
j(ξi), and

∗
U j = F̄−1

j ◦
∗
U , (4.18)

becomes
n∑

i=1

σ̂i
j(yi) =

∗
U j

( n∑

i=1

yi

)
, (4.19)

a Pexider equation (Eichhorn [1978]) whose solution is

σ̂i
j(yi) = cjyi + di

j , (4.20)

which implies

σ̄i
j(ξi) = cj ḡ

i(ξi) + di
j (4.21)

where cj , di
j ∈ R. Because σ̄i

j and ḡi are increasing functions, cj > 0. (In addition, because

σ̄i
1 = ḡi, c1 = 1 and di

1 = 0.) Without loss of generality, cj and di
j can be absorbed into the

functions āj and bi
j respectively. Given that, equation (4.14) can be rewritten as

V 0(p,u0) =
∗
V 0

( n∑

i=1

m∑

j=1

(
āj(p)ḡi(ui

j) + bi
j(p)

)
,p

)
(4.22)
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which implies, using (4.1), that

V i(p,ui) =
∗
V i

( m∑

j=1

(
āj(p)ḡi(ui

j) + bi
j(p)

)
,p

)
. (4.23)

Equal-Utility Probability Independence, which follows from Continuity and Monotonicity in

Probabilities, implies V i(p,uc) = u (equation (1.3)), and

∗
V i

( m∑

j=1

āj(p)ḡi(u) +

m∑

j=1

bi
j(p),p

)
= u. (4.24)

Let t =
∑m

j=1 āj(p)ḡi(u) +
∑m

j=1 bi
j(p) and solve for u to get

∗
V i(t,p) = ḡi−1

(
t −

∑m
j=1 bi

j(p)
∑m

k=1 āk(p)

)
. (4.25)

Using (4.23), this implies

vi = V i(p,ui) = ḡi−1
(∑m

j=1 āj(p)ḡi(ui
j) +

∑m
j=1 bi

j(p)−
∑m

j=1 bi
j(p)

∑m
k=1 āk(p)

)

= ḡi−1
( m∑

j=1

āj(p)∑m
k=1 āk(p)

ḡi(ui
j)

)
.

(4.26)

Defining aj(p) = āj(p)/
∑m

k=1 āk(p),

V i(p,ui) = ḡi−1
( m∑

j=1

aj(p)ḡi(ui
j)

)
. (4.27)

Now choose (w1, . . . , wn) ∈ Rn
++ such that

∑n
i=1 wi = 1 and define gi(ui

j) = ḡi(ui
j)/wi.

Because gi−1
(t) = ḡi−1

(wit),

V i(p,ui) = gi−1
( m∑

j=1

aj(p)gi(ui
j)

)
(4.28)

which is (4.2). aj is continuous because V i is, and aj(p) > 0 because āj(p) > 0. Using

(4.17) and the definition of gi,

U0(u1
j , . . . , u

n
j ) =

∗
U

( n∑

i=1

wig
i(ui

j)

)
(4.29)
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which implies (4.3). Using (4.22), (4.26) and Value Aggregation ((2.6)),

V 0(p,u0) =
∗
V 0

(
n∑

i=1

m∑

k=1

āk(p)ḡi(vi) +

n∑

i=1

m∑

j=1

bi
j(p),p

)

=
∗
V 0

(
m∑

j=1

āj(p)

( n∑

i=1

ḡi(vi)

)
+

n∑

i=1

m∑

j=1

bi
j(p),p

)

= W (v1, . . . , vn).

(4.30)

Set ui = ūi1m for all i ∈ {1, . . . , n} so that vi = ūi to get

∗
V 0

(
m∑

j=1

āj(p)

( n∑

i=1

ḡi(ūi)

)
+

n∑

i=1

m∑

j=1

bi
j(p),p

)
= W (ū1, . . . , ūn). (4.31)

Because W is independent of p and (ū1, . . . , ūn) can be moved independently of p, the left

side of (4.31) is also independent of p and, as a consequence, (4.30) implies

W (v1, . . . , vn)
o
=

n∑

i=1

ḡi(vi) =

n∑

i=1

wig
i(vi) (4.32)

which is (4.4). (4.5) follows from (4.21) and (4.19). Sufficiency is immediate.

The assumption that U is a product set (in Domain Assumption C) is essential for

Theorem 4 to be true globally. In general, U ⊆
∏n

i=1

∏m
j=1 U i

j and it can be a proper

subset. Even in that case, however, the result of Theorem 4 is true locally. That is, at

any (ū1, . . . , ūn) in the interior of U , there is some ε > 0 such that equations (4.2)–(4.5)

are true in an ε-neighbourhood of ū. Several writers10 have investigated the conditions

under which local additivity implies global additivity on the interior of U . If U is convex,

a sufficient condition is that the indifference sets of Ψ0(p, ·) given by Ψ0(p,u1, . . . ,un) =

W (V 1, (p,u1), . . . , V n(p,un)) (from (4.1)) must be connected for every value of p.11 We

cannot, however reasonably expect this to hold unless U is a product set. Even without the

global result of Theorem 4, however, the comparisons of the next section are valid.

It is possible to write equations (4.3)–(4.5) without the ‘weights’ w1, . . . , wn by incor-

porating them into the functions g1, . . . , gn. This move does not change the individual

utility functions, as the proof shows. Thus the weights are not unique. We have chosen the

more complicated presentation because we think it is reasonable to distinguish the observer’s

preferences from the individual utility functions.

10 See Wakker [1993] and the references therein.
11 See Theorem 2.2 in Wakker [1993] and the discussion that follows it.
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Because the function U0 is not normalized, Theorem 4 does not include a characteriza-

tion of the function V 0 in terms of the observer’s utility vector (u0
1, . . . , u

0
m). One possible

normalization requires the observer’s utility to be the same as individual utility levels when

they are all equal. Using (4.3), this requires

u0
j = U0(u1

j , . . . , u
n
j ) = g0−1

( n∑

i=1

wig
i(ui

j)

)
, (4.33)

where g0 is defined by

g0(t) =

n∑

i=1

wig
i(t). (4.34)

Using (4.5), this implies

V 0(p,u0)
o
= g0−1

( m∑

j=1

aj(p)g0(u0
j)

)
(4.35)

which has the same functional form form as V i, i ∈ {1, . . . , n}. Thus, when V 0, suitably

normalized, satisfies State-Contingent Utility Aggregation and Value Aggregation, it satisfies

all the properties that the individual value functions do.

Anonymity is not used in Theorem 4 and it can be imposed in two ways. It can be applied

to the function W or to the function U0. Defining the functions ǧi by ǧi(u) = wig
i(u) for

all i ∈ {1, . . . , n}, Anonymity requires, in both cases, that

ǧi(u) = ǧ1(u) + γi (4.36)

for all i. If this condition is satisfied,

gi−1
( m∑

j=1

aj(p)gi(ui
j)

)
= ǧ−1

( m∑

j=1

aj(p)ǧ(ui
j)

)
(4.37)

where ǧ = ǧ1, and the individual value functions must be identical.

The value function V i satisfies the Expected Utility Hypothesis if and only if

V i(p,ui) = gi−1
( m∑

j=1

pjg
i(ui

j)

)
. (4.38)

The function aj(p) = pj and it depends on the jth probability alone. gi(ui
j) is person i’s

von-Neumann – Morgenstern utility in state j. The function gi expresses i’s attitude to
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utility risk and, if gi is affine, i is risk-neutral in that sense. Value functions of that type are

sometimes called Bernoulli value functions, in which case,

V i(p,ui) =

m∑

j=1

pju
i
j . (4.39)

This is the case most commonly investigated, but is is not the only one. See Blackorby, Don-

aldson and Weymark [1980, 1998ab], Mongin and d’Aspremont [1998, Section 5.3], Roemer

[1996], Sen [1976] and Weymark [1991] for discussions. In the Bernoulli case, preferences

over utility prospects (but not over non-utility aspects of payoffs) must be identical, and

Anonymity requires equal weights. In addition, if any individual has a Bernoulli value func-

tion, Anonymity requires each person to have one.

We now compare the result of Theorem 4 with various proposals that have been made

for individual value functions. The value functions presented are taken from Machina [1991]

and rewritten in our notation. We consider seven families of value functions, each of which

includes expected utility as a special case.

1. Prospect Theory

Proposed by Edwards [1955, 1962] and by Kahneman and Tversky [1979], Prospect Theory

requires

V i(p,ui)
o
=

m∑

j=1

πi(pj)g
i(ui

j), (4.40)

where πi is increasing and continuous and πi(p) > 0 for all p ∈ S . It is well-known Prospect

Theory does not, in general, satisfy monotonicity with respect to first-order stochastic dom-

inance for m > 2. In addition, it does not always satisfy Equal-Utility Probability Indepen-

dence (EUPI). For that,
∑m

j=1 πi(pj) must be a (positive) constant which can, without loss

of generality, be chosen to be 1. If m ≥ 3, this requires πi to be affine with πi(pj) = αipj +δi,

a requirement that trivializes the theory. To see the formal point involved, note that

m−1∑

j=1

πi(pj) = 1 − πi

(
1 −

m−1∑

j=1

pj

)
=: F

( m−1∑

j=1

pj

)
, (4.41)

a Pexider equation whose solution is (Eichhorn [1978]) is πi(pj) = αipj + δi. Because∑m
j=1 π(pj) = 1, δi = (1 − αi)/m and

πi(pj) = αipj +
1 − αi

m
. (4.42)

To ensure that πi is increasing and that πi(pj) > 0 for all pj ∈ (0, 1), it must be true that

0 < αi ≤ 1. αi = 1 corresponds to the Expected Utility Hypothesis.
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To satisfy the result of Theorem 4, which requires aj(p) to be independent of i, πi must

a be independent of i and, therefore, αi = α, 0 < α ≤ 1. Each person’s deviation from the

Expected Utility Hypothesis must be the same.

2. Rank-Dependent (Anticipated) Utility

The Rank-Dependent (Anticipated) Utility value function of Quiggin [1982] is

V i(p,ui)
o
=

m∑

j=1

H i
j(p)gi(ui

j) (4.43)

where

Hi
j(p) =

{
hi(p1) − hi(0), if j = 1,

hi
( ∑j

k=1 pk

)
− hi

(∑j−1
k=1 pk

)
, otherwise,

(4.44)

and hi is increasing. Equation (4.2) requires the function hi to be independent of i. Because∑m
j=1 Hi

j(p) = hi(1) − hi(0), EUPI is satisfied.

3. Subjectively Weighted Utility

This family of value functions (Karmarkar [1978, 1979]) requires

V i(p,ui)
o
=

m∑

j=1

πi(pj)∑m
k=1 πi(pk)

gi(ui
j). (4.45)

This proposal satisfies EUPI and is consistent with the result of Theorem 4 as long as πi is

independent of i.

The next four models do not satisfy the conditions of the theorem.

4. Weighted Utility

Chew [1983], Chew and MacCrimmon [1979] and Fishburn [1983] have proposed the Weighted

Utility value function

V i(p,ui)
o
=

m∑

j=1

(
pjτ

i(ui
j)∑m

k=1 pkτ i(ui
k)

)
gi(ui

j), (4.46)

and it cannot satisfy the multiplicative separability required by Theorem 4 unless the function

τ i is independent of ui
j , in which case it satisfies the Expected Utility Hypothesis.

5. General Quadratic
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Chew, Epstein and Segal [1988] proposed the General Quadratic value function

V i(p,ui)
o
=

m∑

j=1

m∑

k=1

pipjf
i(ui

j , u
i
k). (4.47)

It does not satisfy the additive separability required by Theorem 4 and, in addition, does

not satisfy EUPI.

6. Optimism/Pessimism

Hey [1994] proposed a family of value functions he called Optimism/Pessimism. The value

function for person i is

V i(p,ui)
o
=

m∑

j=1

hi(pj ,u
i)gi(ui

j). (4.48)

If this function is to satisfy the multiplicative separability required by Theorem 4, hi must be

independent of ui and, in that case, Optimism/Pessimism is equivalent to Prospect Theory.

The comments above apply.

7. Ordinal Independence

The value function for Ordinal Independence (Segal [1984], Green and Jullien [1988]) is

V i(p,ui)
o
=

m∑

j=1

Hi
j(p)f i

(
ui

j ,

j∑

k=1

pk

)
(4.49)

where Hi
j is defined by (4.44). In order to satisfy the multiplicative separability requirement

of Theorem 4, f i must be independent of its second argument and, in that case, Ordinal

Independence is identical to Anticipated Utility.

The major examples of non-expected-utility proposals in the list above that can satisfy

equation (4.19) are Subjectively Weighted Utility Theory and Rank-Dependent (Anticipated)

Utility Theory, provided that the probability-distorting function is the same for all individ-

uals. Although this is a stringent requirement, we have established that consistent social

aggregation is possible without satisfaction of the Expected-Utility Hypothesis.

5. Conclusion

Without the Expected Utility Hypothesis, the social observer’s preferences cannot satisfy

both ex-ante and ex-post welfarism (Theorems 1–3). If probabilities are ’objective’, possibil-

ities for social aggregation exist and are described in Theorem 4. Individual value functions
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are given by

vi = V i(p,ui) = gi−1
( m∑

j=1

aj(p)gi(ui
j)

)
, (5.1)

and the observer’s value function is ordinally equivalent to

n∑

i=1

wig
i(vi) =

n∑

i=1

m∑

j=1

wiaj(p)gi(ui
j). (5.2)

In this equation, the utility levels (ui
1, . . . , u

i
m) are person i’s actual utility levels in the

m states and the transformed utilities (gi(ui
1), . . . , g

i(ui
m)) correspond to his or her von-

Neumann – Morgenstern (vNM) utilities.

It may be instructive to rewrite (5.1) in terms of the names of alternatives. For the

prospect (x1, . . . , xm) ∈ Xm, person i’s utility level in state j is U i
j(xj). Writing

◦
U i

j(xj) =

gi(U i(xj)),
◦
U i corresponds to i’s vNM utility function. Theorem 4 shows that the state-

contingent utility function of the observer is ordinally equivalent to
∑n

i=1 wi
◦
U i

j(xj), and

the observer’s value function is ordinally equivalent to
∑n

i=1

∑m
j=1 wiaj(p)

◦
U i

j(xj). This

value function has the Weighted Utilitarian form, but it is in fact Weighted Generalized

Utilitarianism unless the utility functions
◦
U i

j and U i
j are cardinally equivalent (either one is

an increasing affine transform of the other). In this case, we say that value functions satisfy

the Generalized Bernoulli Hypothesis.

The most important consequence of Theorem 4 is, therefore, that support for Weighted

Generalized Utilitarianism and Weighted Utilitarianism are the same with and without the

Expected Utility Hypothesis. It is true, however, that Theorem 4 requires both the ex-ante

and ex-post Pareto principles, and it is also true that its proof requires that the state-

contingent utilities can be varied.

The individual and social value functions in (5.1) and (5.2) can be interpreted in different

ways. Suppose, first, that p′j = aj(p) is interpreted as a subjectively distorted probability

that differs from the ‘objective’ probability pj . Then all individuals and the observer have

preferences that satisfy the Expected Utility Hypothesis with identically distorted subjective

probabilities that are functionally related to the ‘objective’ ones. Alternatively, the prefer-

ences represented by V 1, . . . , V n and V 0 in (5.1) and (5.2) can be thought of as generalizing

the preferences of Subjectively Weighted Utility Theory and Rank-Dependent (Anticipated)

Utility Theory, two important constructions in contemporary decision theory.
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APPENDIX: Gorman’s Overlapping Theorem

For each i ∈ N = {1, . . . , n}, let Ii be a nondegenerate interval and suppose that F :

I1 × . . . × In −→ R is a continuous and increasing function. Let Nr ⊆ N be such that

∅ 6= Nr 6= N and let N c = N \Nr. Furthermore, let Xr be the subvector of X ∈ I1×. . .×In

corresponding to Nr and let Xc be the subvector of X corresponding to N c.

The set of variables Nr is (strictly) separable in F from its complement if and only if there

exist continuous and increasing functions F r :
∏

i∈Nr Ii −→ R and F 0 : Ar ×
∏

i∈N c −→ R
such that

F (X) = F 0(F r(Xr), Xc)

for all X ∈
∏

i∈N Ii, where Ar := F r
( ∏

i∈N r Ii

)
, the image of F r.

The following is the version of the overlapping theorem which is relevant for our purposes

(Gorman [1968] actually proves a stronger result):

Theorem: If Nr and N s are nonempty and (strictly) separable in F from their respective

complements in N , and N r∩N s, Nr\Ns, N s\N r are nonempty, then there exist continuous

and increasing functions F 1 :
∏

i∈N1 Ii −→ R, F 2 :
∏

i∈N2 Ii −→ R, F 3 :
∏

i∈N3 Ii −→ R,

and F 0 : Ar,s ×
∏

i∈Nc Ii −→ R such that

F (X) = F 0(F 1(X1) + F 2(X2) + F 3(X3), Xc)

for all X ∈ Rn, where N1 := Nr \N s, N2 := Nr∩N s, N3 := Ns\Nr, Nc := N \(N r∪Ns),

and Ar,s := F 1
( ∏

i∈N1 Ii

)
+ F 1

( ∏
i∈N2 Ii

)
+ F 3

( ∏
i∈N3 Ii

)
.
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