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A. Introduction

“The answer to the question what is the Mean of a given set of magnitudes cannot in general be found,
unless there is given also the object for the sake of which a mean value is required. There are as many kinds
of average as there are purposes; and we may almost say in the matter of prices as many purposes as
writers.  Hence much vain controversy between persons who are literally at cross purposes.” F.Y.
Edgeworth (1888; 347).

1.     The number of physically distinct goods and unique types of services that consumers
can purchase is in the millions.  On the business or production side of the economy, there
are even more commodities that are actively traded.  This is because firms not only
produce commodities for final consumption, they also produce exports and intermediate
commodities that are demanded by other producers.  Firms collectively also use millions
of imported goods and services, thousands of different types of labor services and
hundreds of thousands of specific types of capital.  If we further distinguish physical
commodities by their geographic location or by the season or time of day that they are
produced or consumed, then there are billions of commodities that are traded within each
year of any advanced economy.  For many purposes, it is necessary to summarize this
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vast amount of price and quantity information into a much smaller set of numbers.  The
question that this chapter addresses is: how exactly should the microeconomic
information involving possibly millions of prices and quantities be aggregated into a
smaller number of price and quantity variables?  This is the basic index number problem.

2.     It is possible to pose the index number problem in the context of microeconomic
theory; i.e., given that we wish to implement some economic model based on producer or
consumer theory, what is the “best” method for constructing a set of aggregates for the
model?  However, when constructing aggregate prices or quantities, other points of view
(that do not rely on economics) are possible.  We will also consider some of these
alternative points of view in this chapter.  Thus in sections B to G below, we consider
some of the early noneconomic approaches to index number theory.  Economic
approaches are considered in sections H and I below.

3.     The index number problem can be framed as the problem of decomposing the value
of a well defined set of transactions in a period of time into an aggregate price term times
an aggregate quantity term.  It turns out that this approach to the index number problem
does not lead to any useful solutions so in section B below, we consider the problem of
decomposing a value ratio pertaining to two periods of time into a component that
measures the overall change in prices between the two periods (this is the price index)
times a term that that measures the overall change in quantities between the two periods
(this is the quantity index).  The simplest price index is a fixed basket type index; i.e., we
choose fixed amounts of the n quantities in the value aggregate and price this fixed basket
of quantities at the prices of period 0 and at the prices of period 1 and our fixed basket
price index is simply the ratio of these two values where prices vary but quantities are
held fixed.  Two natural choices for the fixed basket are the quantities transacted in the
base period, period 0, or the quantities transacted in the current period, period 1.  These
two choices lead to the Laspeyres (1871) and Paasche (1874) price indices respectively.
Appendix 3.1 provides a decomposition of the difference between these two indices into
“explanatory” factors.

4.     Unfortunately, the Paasche and Laspeyres measures of aggregate price change can
differ, sometimes, substantially.  Thus in section C, we consider taking an average of
these two indices to come up with a single measure of price change.  In section C.1, we
argue that the “best” average to take is the geometric mean, which is Irving Fisher’s
(1922) ideal price index.  In section C.2, instead of averaging the Paasche and Laspeyres
measures of price change, we consider taking an average of the two baskets.  This fixed
basket approach to index number theory leads to a price index advocated by Walsh
(1901) (1921).

5.     In section D, we consider another approach to the determination of the functional
form or the formula for the price index.  This approach is due to the French economist,
Divisia (1926), and his approach is based on the assumption that price and quantity data
are available as continuous functions of time.  The theory of differentiation is used in
order to decompose the rate of change of a continuous time value aggregate into two
components that reflect aggregate price and quantity change.  At first sight, it appears that
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this approach does not have any connection with the other approaches to index number
theory but Appendix 3.2 shows that the Divisia approach does have a connection with the
economic approach.  Although the approach of Divisia offers some insights3, it does not
offer much guidance to statistical agencies in terms of leading to a definite choice of
index number formula.

6.     In section E, we consider the advantages and disadvantages of using a fixed base
period in the bilateral index number comparison versus always comparing the current
period with the previous period, which is called the chain system.  In the chain system, a
link is an index number comparison of one period with the previous period.  These links
are multiplied together in order to make comparisons over many periods.

7.     Having considered various fixed basket approaches to index number theory as well
as the approach of Divisia, in section F, we consider the third major noneconomic
approach to index number theory, which is the test or axiomatic approach.  In this
approach, we attempt to determine the functional form for the price and quantity indices
by asking that these aggregation functions have various intuitively plausible properties.
It appears that the Fisher ideal price index does “best” from this viewpoint.

8.     In section G, we consider the fourth major noneconomic approach to index number
theory, the stochastic approach.  In section G.1, we consider the very early stochastic
approach due to Jevons (1865) (1884) and Edgeworth (1888) (1923).  These early
approaches assumed that an adequate price index could be obtained simply by taking the
average of a large number of price relatives of the form pi

1/pi
0, where pi

t is the price of
commodity i in period t.  This early stochastic approach is not considered suitable for
statistical agencies because it does not take into account the economic importance of the
individual price quotations, pi

t.  However, Theil (1967) worked out a weighted stochastic
approach to index number theory that is very suitable for statistical agencies.  His
approach leads to a functional form for the price index that was advocated by the Finnish
economist, Törnqvist (1936).

9.     In section H, we turn to our fifth and last approach to index number theory, the
economic approach.  In section H, we consider the case where there is only one
(representative) household while in section I, we consider the many households case.  In
the economic approach, it is assumed that the observed price and quantity data are
generated as solutions to various economic optimization problems.  Many price
statisticians find the assumptions made in the economic approach to be somewhat
implausible.  Perhaps the best way to regard the assumptions made in the economic
approach is that they simply formalize the fact that consumers tend to purchase more of a
commodity if its price falls relative to other prices.  In section H, it will be shown that the
Fisher, Walsh and Törnqvist price indices (which emerged as being best in the various
noneconomic approaches) are also among the “best” in the economic approach to index
number theory.  Moreover, it will be shown in Appendix 3.3 that these three indices

                                                
3 In particular, it can be used to justify the chain system of index numbers, which will be discussed in
section E.
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approximate each other very closely using “normal” time series data. Thus as far as index
number theory is concerned, it appears at this stage that “all roads lead to Rome”.

10.     Section I concludes this chapter with a discussion of the economic approach to
index number theory when there are many households.  In particular, the theory of
democratic and plutocratic price indices initiated by Prais (1959) is discussed.

B. The decomposition of value aggregates into price and quantity components

B.1  The decomposition of value aggregates and the product test

11.     A price index is a measure or function which summarizes the change in the prices
of  many commodities from one situation 0 (a time period or place) to another situation 1.
More specifically, for most practical purposes, a price index can be regarded as a
weighted mean of the change in the relative prices of the commodities under
consideration in the two situations.  To determine a price index, we need to know:

• which commodities or items to include in the index;
• how to determine the item prices;
• which transactions that involve these items to include in the index;
• how to determine the weights and from which sources should these weights be drawn;
• what formula or type of mean should be used to average the selected item relative

prices.

All of the above price index definition questions except the last can be answered by
appealing to the definition of the value aggregate to which the price index refers.  A
value aggregate V for a given collection of items and transactions is computed as:

(3.1)  V = ∑i=1
n pi qi

where pi represents the price of the ith item in national currency units, qi represents the
corresponding quantity transacted in the time period under consideration and the
subscript i identifies the ith elementary item in the group of n items that make up the
chosen value aggregate V.  Included in this definition of a value aggregate is the
specification of the group of included commodities (which items to include) and of the
economic agents engaging in transactions involving those commodities (which
transactions to include), as well as the valuation and time of recording principles
motivating the behavior of the economic agents undertaking  the transactions
(determination of prices).  The included elementary items, their valuation (the pi), the
eligibility of the transactions and the item weights (the qi) are all within the domain of
definition of the value aggregate.  The precise determination of the pi and qi will be
discussed in more detail in subsequent chapters.4

                                                
4 Ralph Turvey has reminded us that some values may be difficult to decompose into unambiguous price
and quantity components.  Some examples of difficult to decompose values are bank charges, gambling
expenditures and life insurance payments.
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12.          The value aggregate V defined by (3.1) above referred to a certain set of
transactions pertaining to a single (unspecified) time period.  We now consider the same
value aggregate for two places or time periods, periods 0 and 1.  For the sake of
definiteness, we call period 0  the base period and period 1 the current period and we
assume that we have collected observations on the base period price and quantity vectors,
p0 ≡ [p1

0,…,pn
0] and q0 ≡ [q1

0,…,qn
0] respectively, as well as on the current period price

and quantity vectors, p1 ≡ [p1
1,…,pn

1] and q1 ≡ [q1
1,…,qn

1] respectively.5  The value
aggregates in the two periods are defined in the obvious way as:

(3.2)  V0 ≡ ∑i=1
n pi

0 qi
0 ; V1 ≡ ∑i=1

n pi
1 qi

1 .

In the previous paragraph, we defined a price index as a function or measure which
summarizes the change in the prices of  the n commodities in the value aggregate from
situation 0 to situation 1.  In this paragraph, we will be more general and define a price
index P(p0,p1,q0,q1) along with the corresponding quantity index (or volume index)
Q(p0,p1,q0,q1) to be two functions of the 4n variables p0,p1,q0,q1 (these variables describe
the prices and quantities pertaining to the value aggregate for periods 0 and 1) where
these two functions satisfy the following equation:6

(3.3)  V1/V0 = P(p0,p1,q0,q1) Q(p0,p1,q0,q1).

If there is only one item in the value aggregate, then the price index P should collapse
down to the single price ratio, p1

1/p1
0 and the quantity index Q should collapse down to

the single quantity ratio, q1
1/q1

0.  In the case of many items, the price index P is to be
interpreted as some sort of weighted average of the individual price ratios, p1

1/p1
0,…,

pn
1/pn

0.

13.     Thus our first approach to index number theory can be regarded as the problem of
decomposing the change in a value aggregate, V1/V0, into the product of a part that is due
to price change, P(p0,p1,q0,q1), and a part that is due to quantity change, Q(p0,p1,q0,q1).
This approach to the determination of the price index is the approach that is taken in the
national accounts, where a price index is used to deflate a value ratio in order to obtain an
estimate of quantity change.  Thus in this approach to index number theory, the primary
use for the price index is as a deflator.  Note that once the functional form for the price
index P(p0,p1,q0,q1) is known, then the corresponding quantity or volume index
Q(p0,p1,q0,q1) is completely determined by P; i.e., rearranging (3.3), we have:

(3.4)  Q(p0,p1,q0,q1) = [V1/V0]/P(p0,p1,q0,q1).

Conversely, if the functional form for the quantity index Q(p0,p1,q0,q1) is known, then the
corresponding price index P(p0,p1,q0,q1) is completely determined by Q.  Thus using this
deflation approach to index number theory, we do not require separate theories for the

                                                
5 Note that we are assuming that there are no new or disappearing commodities in the value aggregates.
Approaches to the “new goods problem” will be discussed in Chapter 4.
6 The first person to suggest that the price and quantity indices should be jointly determined in order to
satisfy equation 3.3 was Fisher (1911; 418).  Frisch (1930; 399) called 3.3 the product test.
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determination of the price and quantity indices: if we have determined either P or Q, then
the other function is implicitly determined by the product test (3.3).

14.     In the next subsection, we will consider two concrete choices for the price index
P(p0,p1,q0,q1) and calculate the corresponding quantity indices Q(p0,p1,q0,q1) that result
from using equation (3.4).  These are the two choices used most frequently by national
income accountants.

B.2  The Laspeyres and Paasche indices

15.     One of the simplest approaches to the determination of the price index formula was
described in great detail by Lowe (1823).  His approach to measuring the price change
between periods 0 and 1 was to specify an approximate representative commodity
basket7, which is a quantity vector q ≡ [q1,…,qn], and then calculate the level of prices in
period 1 relative to period 0 as the ratio of the period 1 cost of the basket, ∑i=1

n p i
1qi, to

the period 0 cost of the basket, ∑i=1
n pi

0qi.  This fixed basket approach to the
determination of the price index leaves open the question as to how exactly is the fixed
basket vector q to be chosen?

16.     As time passed, economists and price statisticians demanded a bit more precision
with respect to the specification of the basket vector q.  There are two natural choices for
the reference basket: the base period 0 commodity vector q0 or the current period 1
commodity vector q1.  These two choices lead to the Laspeyres (1871) price index8 PL

defined by (3.5)  and the Paasche (1874) price index9 PP defined by (3.6):10

(3.5)  PL(p0,p1,q0,q1) ≡ ∑i=1
n pi

1qi
0 / ∑i=1

n pi
0qi

0 ;

(3.6)  PP(p0,p1,q0,q1) ≡ ∑i=1
n pi

1qi
1 / ∑i=1

n pi
0qi

1 .

17.     The above formulae can be rewritten in an alternative manner that is very useful for
statistical agencies.  Define the period t expenditure share on commodity i as follows:

(3.7)  si
t ≡ pi

tqi
t / ∑j=1

n pj
tqj

t for i = 1,…,n and t = 0,1.
                                                
7 Lowe (1823; Appendix page 95) suggested that the commodity basket vector q should be updated every
five years.
8 This index was actually introduced and justified by Drobisch (1871a; 147) slightly earlier than Laspeyres.
Laspeyres (1871; 305) in fact explicitly acknowledged that Drobisch showed him the way forward.
However, the contributions of Drobisch have been forgotten for the most part by later writers because
Drobisch aggressively pushed for the ratio of two unit values as being the “best” index number formula.
While this formula has some excellent properties if all of the n commodities being compared have the same
unit of measurement, the formula is useless when say, both goods and services are in the index basket.
9 Again Drobisch (1871b; 424) appears to have been the first to define explicitly and justify this formula.
However, he rejected this formula in favor of his preferred formula, the ratio of unit values, and so again he
did not get any credit for his early suggestion of the Paasche formula.
10 Note that PL(p0,p1,q0,q1) does not actually depend on q1 and PP(p

0,p1,q0,q1) does not actually depend on
q0.  However, it does no harm to include these vectors and the notation indicates that we are in the realm of
bilateral index number theory; i.e., we are comparing the prices and quantities for a value aggregate
pertaining to two periods.
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Then the Laspeyres index (3.5) can be rewritten as follows:

(3.8)  PL(p0,p1,q0,q1)   = ∑i=1
n pi

1qi
0 / ∑j=1

n pj
0qj

0

                                    = ∑i=1
n (pi

1/pi
0) pi

0qi
0 / ∑j=1

n pj
0qj

0

                                    = ∑i=1
n (pi

1/pi
0) si

0                     using definitions (3.7).

Thus the Laspeyres price index PL can be written as a base period expenditure share
weighted arithmetic average of the n price ratios, pi

1/pi
0 .  The Laspeyres formula (until

the very recent past) has been widely used as the intellectual base for Consumer Price
Indices around the world.  To implement it, a statistical agency need only collect
information on expenditure shares sn

0 for the index domain of definition for the base
period 0 and then collect information on item prices  alone on an ongoing basis.  Thus the
Laspeyres CPI can be produced on a timely basis without having to know current period
quantity information.

18.     The Paasche index can also be written in expenditure share and price ratio form as
follows:

(3.9)  PP(p0,p1,q0,q1)  = 1/ [∑i=1
n pi

0qi
1 / ∑j=1

n pj
1qj

1]
                                   = 1/ [∑i=1

n (pi
0/pi

1) pi
1qi

1 / ∑j=1
n pj

1qj
1]

                                   = 1/ [∑i=1
n (pi

1/pi
0)−1 si

1]                     using definitions (3.7)
                                   = [∑i=1

n (pi
1/pi

0)−1 si
1]−1.

Thus the Paasche price index PP can be written as a period 1 (or current period)
expenditure share weighted harmonic average of the n item price ratios pi

1/pi
0.11  The lack

of information on current period quantities prevents statistical agencies from producing
Paasche indices on a timely basis.

19.     The quantity index that corresponds to the Laspeyres price index using the product
test (3.3) is the Paasche quantity index; i.e., if  we replace P in (3.4) by PL defined  by
(3.5), we obtain the following quantity index:

(3.10)  QP(p0,p1,q0,q1) ≡ ∑i=1
n pi

1qi
1 / ∑i=1

n pi
1qi

0 .

Note that QP is the value of the period 1 quantity vector valued at the period 1 prices,
∑i=1

n p i
1qi

1, divided by the (hypothetical) value of the period 0 quantity vector valued at
the period 1 prices, ∑i=1

n pi
1qi

0.  Thus the period 0 and 1 quantity vectors are valued at the
same set of prices, the current period prices, p1.

20.     The quantity index that corresponds to the Paasche price index using the product
test (3.3) is the Laspeyres quantity index; i.e., if  we replace P in (3.4) by PP defined  by
(3.6), we obtain the following quantity index:

                                                
11 Note that the derivation in (3.9) shows how harmonic averages arise in index number theory in a very
natural way.
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(3.11)  QL(p0,p1,q0,q1) ≡ ∑i=1
n pi

0qi
1 / ∑i=1

n pi
0qi

0 .

Note that QL is the (hypothetical) value of the period 1 quantity vector valued at the
period 0 prices, ∑i=1

n pi
0qi

1, divided by the value of the period 0 quantity vector valued at
the period 0 prices, ∑i=1

n pi
0qi

0.  Thus the period 0 and 1 quantity vectors are valued at the
same set of prices, the base period prices, p0.

21.     The problem with the Laspeyres and Paasche index number formulae is that they
are equally plausible but in general, they will give different answers.  For most purposes,
it is not satisfactory for the statistical agency to provide two answers to the question: what
is the “best” overall summary measure of price change for the value aggregate over the
two periods in question?    Thus in the following section, we consider how “best”
averages of these two estimates of price change can be constructed.  What is the “normal”
relationship between the Paasche and Laspeyres indices?  Under “normal” economic
conditions when the price ratios pertaining to the two situations under consideration are
negatively correlated with the corresponding quantity ratios, it can be shown that the
Laspeyres price index will be larger than the corresponding Paasche index.12  In
Appendix 3.1 below, we provide a precise statement of this result.13 This divergence
between PL and PP suggests that if we require a single estimate for the price change
between the two periods, then we should take some sort of evenly weighted average of
the two indices as our final estimate of price change between periods 0 and 1.  As
mentioned above, we will pursue this strategy in the following section.  However, it
should be kept in mind that usually, statistical agencies will not have information on
current expenditure weights and hence averages of Paasche and Laspeyres indices can
only be produced on a delayed basis (perhaps using national accounts information) or not
at all.

C.  Symmetric averages of fixed basket price indices

C.1  The Fisher index as an average of the Paasche and Laspeyres indices

22.    As was mentioned in the previous paragraph, since the Paasche and Laspeyres price
indices are equally plausible but often give different estimates of the amount of aggregate
                                                
12 Peter Hill (1993; 383) summarizes this inequality as follows: “It can be shown that relationship (13) [i.e.,
that PL is greater than PP] holds whenever the price and quantity relatives (weighted by values) are
negatively correlated.  Such negative correlation is to be expected for price takers who react to changes in
relative prices by substituting goods and services that have become relatively less expensive for those that
have become relatively more expensive.  In the vast majority of situations covered by index numbers, the
price and quantity relatives turn out to be negatively correlated so that Laspeyres indices tend
systematically to record greater increases than Paasche with the gap between them tending to widen with
time.”
13 There is another way to see why PP will often be less than PL.  If the period 0 expenditure shares si

0 are
exactly equal to the corresponding period 1 expenditure shares si

1, then by Schlömilch's Inequality (see
Hardy, Littlewood and Polyá (1934)), it can be shown that a weighted harmonic mean of n numbers is
equal to or less than the corresponding arithmetic mean of the n numbers and the inequality is strict if the n
numbers are not all equal.  If expenditure shares are approximately constant across periods, then it follows
that PP will usually be less than PL under these conditions.



11

price change between periods 0 and 1, it is useful to consider taking an evenly weighted
average of these fixed basket price indices as a single estimator of price change between
the two periods.  Examples of such symmetric averages14 are the arithmetic mean, which
leads to the Drobisch (1871b; 425) Sidgwick (1883; 68) Bowley (1901; 227)15 index, PD

≡ (1/2)PL + (1/2)PP, and the geometric mean, which leads to the Fisher16 (1922) ideal
index, PF defined as

(3.12)  PF(p0,p1,q0,q1) ≡ [PL(p0,p1,q0,q1) PP(p0,p1,q0,q1)]1/2 .

At this point, the fixed basket approach to index number theory is transformed into the
test approach to index number theory; i.e., in order to determine which of these fixed
basket indices or which averages of them might be “best”, we need criteria or tests or
properties that we would like our indices to satisfy.  We will pursue this topic in more
detail in section F below but we provide an introduction to the test approach in the
present section because we use a test to determine which average of the Paasche and
Laspeyres indices might be “best”.

23.     What is the “best” symmetric average of PL and PP to use as a point estimate for the
theoretical cost of living index?  It is very desirable for a price index formula that
depends on the price and quantity vectors pertaining to the two periods under
consideration to satisfy the time reversal test17.  We say that the index number formula
P(p0,p1,q0,q1)  satisfies this test if

(3.13)  P(p1,p0,q1,q0) = 1/ P(p0,p1,q0,q1)  ;

i.e., if we interchange the period 0 and period 1 price and quantity data and evaluate the
index, then this new index P(p1,p0,q1,q0) is equal to the reciprocal of the original index
P(p0,p1,q0,q1).  This is a property that is satisfied by a single price ratio and it seems
desirable that our measure of aggregate price change should also satisfy this property so
that it does not matter which period is chosen as the base period.  Put another way, the
index number comparison between any two points of time should not depend on the
choice of which period we regard as the base period: if we choose the other period as the
base period, then our new index number should simply equal the reciprocal of the
original index.  It should be noted that the Laspeyres and Paasche price indices do not
satisfy this time reversal property.

                                                
14 For a discussion of the properties of symmetric averages, see Diewert (1993c).  Formally, an average
m(a,b) of two numbers a and b is symmetric if m(a,b) = m(b,a).  In other words, the numbers a and b are
treated in the same manner in the average.  An example of a nonsymmetric average of a and b is (1/4)a +
(3/4)b.
15 See Diewert (1993a; 36) for additional references to the early history of index number theory.
16 Bowley (1899; 641) appears to have been the first to suggest the use of this index.
17 See Diewert (1992; 218) for early references to this test, which is discussed in more detail in section F.3
below.  If we want our price index to have the same property as a single price ratio, then it is important to
satisfy the time reversal test.  However, other points of view are possible.  For example, we may want to
use our price index for compensation purposes in which case, satisfaction of the time reversal test is not so
important.
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24.     Having defined what it means for a price index P to satisfy the time reversal test,
then it is possible to establish the following result:18 the Fisher ideal price index defined
by (3.12) above is the only index that is a homogeneous19 symmetric average of the
Laspeyres and Paasche price indices, PL and PP, and satisfies the time reversal test (3.13)
above.  Thus the Fisher ideal price index emerges as perhaps the “best” evenly weighted
average of the Paasche and Laspeyres price indices.

25.     It is interesting to note that this symmetric basket approach to index number theory
dates back to one of the early pioneers of index number theory, Bowley, as the following
quotations indicate:

“If [the Paasche index] and [the Laspeyres index] lie close together there is no further difficulty; if they
differ by much they may be regarded as inferior and superior limits of the index number, which may be
estimated as their arithmetic mean … as a first approximation.”  A. L. Bowley (1901; 227).

“When estimating the factor necessary for the correction of a change found in money wages to obtain the
change in real wages, statisticians have not been content to follow Method II only [to calculate a Laspeyres
price index], but have worked the problem backwards [to calculate a Paasche price index] as well as
forwards. … They have then taken the arithmetic, geometric or harmonic mean of the two numbers so
found.”  A. L. Bowley (1919; 348).20

26.     The quantity index that corresponds to the Fisher price index using the product test
(3.3) is the Fisher quantity index; i.e., if  we replace P in (3.4) by PF defined  by (3.12),
we obtain the following quantity index:

(3.14)  QF(p0,p1,q0,q1) ≡ [QL(p0,p1,q0,q1)QP(p0,p1,q0,q1)]1/2 .

Thus the Fisher quantity index is equal to the square root of the product of the Laspeyres
and Paasche quantity indices.  It should also be noted that QF(p0,p1,q0,q1) =
PF(q0,q1,p0,p1); i.e., if we interchange the role of prices and quantities in the Fisher price
index formula, then we obtain the Fisher quantity index.21

27.     Rather than take a symmetric average of the two basic fixed basket price indices
pertaining to two situations, PL and PP, it is also possible to return to Lowe’s basic
formulation and choose the basket vector q to be a symmetric average of the base and
current period basket vectors, q0 and q1.  We pursue this approach to index number theory
in the following subsection.

C.2  The Walsh index and the theory of the “pure” price index

                                                
18 See Diewert (1997; 138).
19 An average or mean of two numbers a and b, m(a,b), is homogeneous  if when we multiply both numbers
a and b by a positive number λ, then the mean is also multiplied by λ; i.e., m satisfies the following
property:  m(λa,λb) = λm(a,b).
20 Fisher (1911; 417-418) (1922) also considered the arithmetic, geometric and harmonic averages of the
Paasche and Laspeyres indices.
21 Fisher (1922; 72) said that P and Q satisfied the factor reversal test if Q(p0,p1,q0,q1) = P(q0,q1,p0,p1) and P
and Q satisfied the product test (3.3) as well.
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28.     Price statisticians tend to be very comfortable with a concept of the price index that
is based on pricing out a constant “representative” basket of commodities, q ≡
(q1,q2,…,qn), at the prices of period 0 and 1, p0 ≡ (p1

0,p2
0,…,pn

0) and p1 ≡ (p1
1,p2

1,…,pn
1)

respectively.  Price statisticians refer to this type of index as a pure price index22 and it
corresponds to Knibbs’ (1924; 43) unequivocal price index.23 Thus the general functional
form for the pure price index is

(3.15)  PK(p0,p1,q) ≡ ∑i=1
n pi

1qi / ∑i=1
n pi

0qi  = ∑i=1
n si(pi

1/pi
0)

where the (hypothetical) expenditure shares si corresponding to the quantity weights
vector q are defined by:

(3.16)  si ≡ pi
0qi / ∑j=1

n pj
0qj     for i = 1,2,…,n.

29.     The main reason why price statisticians might prefer the family of pure or
unequivocal price indices defined by (3.15) is that the fixed basket concept is easy to
explain to the public.  Note that the Laspeyres and Paasche indices are special cases of
the pure price concept if we choose q = q0 (which leads to the Laspeyres index) or if we
choose q = q1 (which leads to the Paasche index).24  The practical problem of picking q
remains to be resolved and that is the problem we will address in this section.

30.     It should be noted that Walsh (1901) (1921) also saw the price index number
problem in the above framework:

“Commodities are to be weighted according to their importance, or their full values.  But the problem of
axiometry always involves at least two periods.  There is a first period, and there is a second period which
is compared with it.  Price-variations have taken place between the two, and these are to be averaged to get
the amount of their variation as a whole.  But the weights of the commodities at the second period are apt to
be different from their weights at the first period.  Which weights, then, are the right ones—those of the
first period? Or those of the second? Or should there be a combination of the two sets?  There is no reason
for preferring either the first or the second.  Then the combination of both would seem to be the proper
answer.  And this combination itself involves an averaging of the weights of the two periods.”  Correa
Moylan Walsh (1921; 90).

                                                
22 See section 7 in Diewert (2001).  This concept for a price index dates back to Lowe (1823) at least.
14 “Suppose however that, for each commodity, Q′ = Q, then the fraction, ∑(P′Q) / ∑(PQ), viz., the ratio of
aggregate value for the second unit-period to the aggregate value for the first unit-period is no longer
merely a ratio of totals, it also shows unequivocally the effect of the change in price.  Thus it is an
unequivocal price index for the quantitatively unchanged complex of commodities, A, B, C, etc.
     It is obvious that if the quantities were different on the two occasions, and if at the same time the prices
had been unchanged, the preceding formula would become ∑(PQ′) / ∑(PQ).  It would still be the ratio of
the aggregate value for the second unit-period to the aggregate value for the first unit period.  But it would
be also more than this.  It would show in a generalized way the ratio of the quantities on the two occasions.
Thus it is an unequivocal quantity index for the complex of commodities, unchanged as to price and
differing only as to quantity.
     Let it be noted that the mere algebraic form of these expressions shows at once the logic of the problem
of finding these two indices is identical.”  Sir George H. Knibbs (1924; 43-44).
24 Note that the ith share defined by (3.16) in this case is the “mixed” share si ≡ p i

0qi
1 / ∑j=1

n p j
0qj

1 which
uses the prices of period 0 and the quantities of period 1.
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We will follow Walsh’s suggestion and restrict the ith quantity weight, qi, to be an
average or mean of the base period quantity qi

0 and the current period quantity for
commodity i qi

1, say m(qi
0,qi

1), for i = 1,2,…,n.25  Under this assumption, the pure price
index (3.15) becomes:

(3.17)  PK(p0,p1,q0,q1) ≡ ∑i=1
n pi

1m(qi
0,qi

1) / ∑j=1
n pj

0m(qj
0,qj

1).

31.     In order to determine the functional form for the mean function m, it is necessary to
impose some tests or axioms on the pure price index defined by (3.17).  As in section C.1,
we ask that PK satisfy the time reversal test, (3.13) above. Under this hypothesis, it is
immediately obvious that the mean function m must be a symmetric mean26; i.e., m must
satisfy the following property:  m(a,b) = m(b,a) for all a > 0 and b > 0.  This assumption
still does not pin down the functional form for the pure price index defined by (3.17)
above.  For example, the function m(a,b) could be the arithmetic mean, (1/2)a + (1/2)b, in
which case (3.17) reduces to the Marshall (1887) Edgeworth (1925) price index PME,
which was the pure price index preferred by Knibbs (1924; 56):

(3.18)  PME(p0,p1,q0,q1) ≡ ∑i=1
n pi

1(1/2)(qi
0 + qi

1) / ∑j=1
n pj

0(1/2)(qj
0 + qj

1) .

32.     On the other hand, the function m(a,b) could be the geometric mean, (ab)1/2, in
which case (3.17) reduces to the Walsh (1901; 398) (1921; 97) price index, PW

27:

(3.19)  PW(p0,p1,q0,q1) ≡ ∑i=1
n pi

1(qi
0qi

1)1/2 / ∑j=1
n pj

0(qj
0qj

1)1/2 .

33.     There are many other possibilities for the mean function m, including the mean of
order r, [(1/2)ar + (1/2)br ]1/r for r ≠ 0.  Obviously, in order to completely determine the
functional form for the pure price index PK, we need to impose at least one additional test
or axiom on PK(p0,p1,q0,q1).

34.     There is a potential problem with the use of the Edgeworth Marshall price index
(3.18) that has been noticed in the context of using the formula to make international
comparisons of prices.  If the price levels of a very large country are compared to the
price levels of a small country using formula (3.17), then the quantity vector of the large
country may totally overwhelm the influence of the quantity vector corresponding to the

                                                
25 Note that we have chosen the mean function m(qi

0,qi
1) to be the same for each item i.  We assume that

m(a,b) has the following two properties: m(a,b) is a positive and continuous function, defined for all
positive numbers a and b and m(a,a) = a for all a > 0.
26 For more on symmetric means, see Diewert (1993c; 361).
27 Walsh endorsed PW as being the best index number formula: “We have seen reason to believe formula 6
better than formula 7.  Perhaps formula 9 is the best of the rest, but between it and Nos. 6 and 8 it would be
difficult to decide with assurance.” C.M. Walsh (1921; 103).  His formula 6 is PW defined by (3.19) and his
9 is the Fisher ideal defined by (3.12) above.  The Walsh quantity index, QW(p0,p1,q0,q1)  is defined as
PW(q0,q1,p0,p1); i.e., the role of prices and quantities in definition (3.19) is interchanged.  If we use the
Walsh quantity index to deflate the value ratio, we obtain an implicit price index which is Walsh’s formula
8.
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small country.28  In technical terms, the Edgeworth Marshall formula is not homogeneous
of degree 0 in the components of both q0 and q1.  To prevent this problem from occurring
in the use of the pure price index PK(p0,p1,q0,q1) defined by (3.17), we ask that PK satisfy
the following invariance to proportional changes in current quantities test.29

(3.20)  PK(p0,p1,q0,λq1) = PK(p0,p1,q0,q1) for all p0,p1,q0,q1 and all λ > 0.

The two tests, the time reversal test (3.13) and the invariance test (3.20), enable us to
determine the precise functional form for the pure price index PK defined by (3.17)
above: the pure price index PK must be the Walsh index PW defined by (3.19).30

35.     In order to be of practical use by statistical agencies, an index number formula
must be able to be expressed as a function of the base period expenditure shares, si

0, the
current period expenditure shares, si

1, and the n price ratios, pi
1/pi

0.  The Walsh price
index defined by (3.19) above can be rewritten in this format:

(3.21)  PW(p0,p1,q0,q1) ≡ ∑i=1
n pi

1(qi
0qi

1)1/2 / ∑j=1
n pj

0(qj
0qj

1)1/2

                       = ∑i=1
n [pi

1/(pi
0pi

1)1/2] (si
0si

1)1/2 / ∑j=1
n [pj

0/(pj
0pj

1)1/2]  (sj
0sj

1)1/2

                       = ∑i=1
n (si

0si
1)1/2 [pi

1/pi
0]1/2  / ∑j=1

n (sj
0sj

1)1/2 [pj
0/pj

1]1/2 .

36.     The approach to index number theory in this section was to consider averages of
various fixed basket type price indices.  Our first approach was to take an even handed
average of the two primary fixed basket indices: the Laspeyres and Paasche price indices.
These two primary indices are based on pricing out the baskets that pertain to the two
periods (or locations) under consideration.  Taking an average of them led to the Fisher
ideal price index PF defined by (3.12) above.  Our second approach was to average the
basket quantity weights and then price out this average basket at the prices pertaining to
the two situations under consideration.  This approach led to the Walsh price index PW

defined by (3.19) above  Both of these indices can be written as a function of the base
period expenditure shares, si

0, the current period expenditure shares, si
1, and the n price

ratios, pi
1/pi

0.  Assuming that the statistical agency has information on these three sets of
variables, which index should be used?  Experience with normal time series data has
shown that these two indices will not differ substantially and thus it is a matter of
indifference which of these indices is used in practice.31  Both of these indices are
examples of superlative indices, which will be defined in section H below.  However,
note that both of these indices treat the data pertaining to the two situations in a
symmetric manner.  Hill32 commented on superlative price indices and the importance of
a symmetric treatment of the data as follows:
                                                
28 This is not likely to be a severe problem in the time series context where the change in quantity vectors
going from one period to the next is small.
29 This is the terminology used by Diewert (1992; 216).  Vogt (1980) was the first to propose this test.
30 See section 7 of Diewert (2001).
31 Diewert (1978; 887-889) shows that these two indices will approximate each other to the second order
around an equal price and quantity point.  Thus for normal time series data where prices and quantities do
not change much going from the base period to the current period, the indices will approximate each other
quite closely.  However, see the discussion in section H.6 below.
32 See also Hill (1988).
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“Thus economic theory suggests that, in general, a symmetric index that assigns equal weight to the two
situations being compared is to be preferred to either the Laspeyres or Paasche indices on their own.  The
precise choice of superlative index—whether Fisher, Törnqvist or other superlative index—may be of only
secondary importance as all the symmetric indices are likely to approximate each other, and the underlying
theoretic index fairly closely, at least when the index number spread between the Laspeyres and Paasche is
not very great.”  Peter Hill (1993; 384).

D.  The Divisia index and discrete approximations to it

D.1  The Divisia price and quantity indices

37.     The second approach to index number theory relies on the assumption that price
and quantity data change in a more or less continuous way.

38.     Suppose that our price and quantity data on the n commodities in our chosen
domain of definition can be regarded as continuous functions of (continuous) time, say
pi(t) and q i(t) for i = 1,…,n.  The value of consumer expenditure at time t is V(t) defined
in the obvious way as:

(3.22)  V(t) ≡ ∑i=1
n pi(t)qi(t).

Now suppose that the functions pi(t) and qi(t) are differentiable.  Then we can
differentiate both sides of (3.22) with respect to time to obtain:

(3.23)  V′(t) = ∑i=1
n pi′(t)qi(t) + ∑i=1

n pi(t)qi′(t).

Now divide both sides of (3.23) through by V(t) and using (3.22), we obtain the
following equation:

(3.24)  V′(t)/V(t) = [∑i=1
n pi′(t)qi(t) + ∑i=1

n pi(t)qi′(t)] / ∑j=1
n pj(t)qj(t)

                            = ∑i=1
n [pi′(t)/pi(t)] si(t) + ∑i=1

n [qi′(t)/qi(t)]si(t)

where the time t expenditure share on commodity i, si(t), is defined as:

(3.25)  si(t) ≡ pi(t)qi(t) / ∑m=1
n pm(t)qm(t)     for i = 1,2,…,n.

Now Divisia (1926; 39) argued as follows: suppose the aggregate value at time t, V(t),
can be written as the product of a time t price level function, P(t) say, times a time t
quantity level function, Q(t) say; i.e., we have:

(3.26)  V(t) = P(t)Q(t).

Suppose further that the functions P(t) and Q(t) are differentiable.  Then differentiating
(3.26) yields:

(3.27)  V′(t) = P′(t)Q(t) + P(t)Q′(t).
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Dividing both sides of (3.27) by V(t) and using (3.26) leads to the following equation:

(3.28)  V′(t)/V(t) = [P′(t)/P(t)] + [Q′(t)/Q(t)].

Divisia compared the two expressions for the logarithmic value derivative, V′(t)/V(t),
given by (3.24) and (3.28) and he simply defined the logarithmic rate of change of the
aggregate price level, P ′(t)/P(t), as the first set of terms on the right hand side of (3.24)
and he simply defined the logarithmic rate of change of the aggregate quantity level,
Q′(t)/Q(t), as the second set of terms on the right hand side of (3.24); i.e., he made the
following definitions:

(3.29)  P′(t)/P(t)  ≡ ∑i=1
n si(t) [pi′(t)/pi(t)] ;

(3.30)  Q′(t)/Q(t) ≡ ∑i=1
n si(t) [qi′(t)/qi(t)].

39.     Definitions (3.29) and (3.30) are reasonable definitions for the proportional
changes in the aggregate price and quantity (or quantity) levels, P(t) and Q(t).  The
problem with these definitions is that economic data are not collected in continuous time;
they are collected in discrete time.  In other words, even though transactions can be
thought of as occurring in continuous time, no consumer records his or her purchases as
they occur in continuous time; rather, purchases over a finite time period are cumulated
and then recorded.  A similar situation occurs for producers or sellers of commodities;
firms cumulate their sales over discrete periods of time for accounting or analytical
purposes.  If we attempt to approximate continuous time by shorter and shorter discrete
time intervals, we can expect empirical price and quantity data to become increasingly
erratic since consumers only make purchases at discrete points of time (and producers or
sellers of commodities only make sales at discrete points of time).  However, it is still of
some interest to approximate the continuous time price and quantity levels, P(t) and Q(t)
defined implicitly by (3.29) and (3.30), by discrete time approximations. This can be
done in two ways. We can either use methods of numerical approximation or make
assumptions about the path taken by the functions pi(t) and qi(t) (i = 1,…,n) through time.
We will follow the first strategy in the following section.  For discussions of the second
strategy, see Vogt (1977) (1978), Van Ijzeren (1987; 8-12), Vogt and Barta (1997) and
Balk (2000a).

40.     There is a connection between the Divisia price and quantity levels, P(t) and Q(t),
and the economic approach to index number theory.  However, this connection is best
made after we have covered the economic approach to index number theory.  Since this
material is rather technical, it has been relegated to Appendix 3.2.

D.2  Discrete approximations to the continuous time Divisia index

41.     In order to make operational the continuous time Divisia price and quantity levels,
P(t) and Q(t) defined by the differential equations (3.29) and (3.30), we have to convert to
discrete time.  Divisia (1926; 40) suggested a straightforward method for doing this
conversion, which we now outline.
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42.     Define the following price and quantity (forward) differences:

(3.31)  ∆P ≡ P(1) − P(0);
(3.32)  ∆pi ≡ pi(1) − pi(0) ;    i = 1,…,n.

Using the above definitions, we have:

(3.33)  P(1)/P(0) = [P(0) + ∆P]/P(0)                                              using (3.31)
                            = 1 + [∆P/P(0)]
                            ≈ 1 + [ ∑i=1

n ∆pi qi(0)]/[ ∑m=1
n pm(0)qm(0)]

                              using (3.29) when t = 0 and approximating pi′(0) by the difference ∆pi

                            = [ ∑i=1
n {pi(0) + ∆pi } qi(0)]/[ ∑m=1

n pm(0)qm(0)]
                            = [ ∑i=1

n pi(1) qi(0)]/[ ∑m=1
n pm(0)qm(0)]           using pn(1) = pn(0) + ∆pn

                            = PL(p0,p1,q0,q1)

where we define pt ≡ [p1(t),…,pn(t)] and qt ≡ [q1(t),…,qn(t)] for t = 0,1.  Thus, it can be
seen that Divisia’s discrete approximation to his continuous time price index is just our
old friend, the Laspeyres price index, PL defined above by (3.5).

43.     But now we run into the problem noted by Frisch (1936; 8): instead of
approximating the derivatives by the discrete (forward) differences defined by (3.31) and
(3.32), we could use other approximations and obtain a wide variety of discrete time
approximations.  For example, instead of using forward differences and evaluating the
index at time t = 0, we could use backward differences and evaluate the index at time t =
1.  These backward differences are defined as:

(3.34)  ∆bpi ≡ pi(0) − pi(1) ;    i = 1,…,n.

This use of backward differences leads to the following approximation for P(0)/P(1):

(3.35)  P(0)/P(1) = [P(1) + ∆bP]/P(1)
                            = 1 + [∆bP/P(1)]
                            ≈ 1 + [ ∑i=1

n ∆bpi qi(1)]/[ ∑m=1
n pm(1)qm(1)]

                             using (3.29) when t = 1 and approximating pi′(1) by the difference ∆bpi

                            = [ ∑i=1
n {pi(1) + ∆bpi} qi(1)]/[ ∑m=1

n pm(1)qm(1)]
                            = [ ∑i=1

n pi(0) qi(1)]/[ ∑m=1
n pi(1)qi(1)]          using pi(0) = pi(1) + ∆bpi

                            = 1/ PP(p0,p1,q0,q1)

where PP is the Paasche index defined above by (3.6).  Taking reciprocals of both sides of
(3.35) leads to the following discrete approximation to P(1)/P(0):

(3.36)  P(1)/P(0)  ≈ PP.
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44.     Thus, as Frisch33 noted, both the Paasche and Laspeyres indices can be regarded as
(equally valid) approximations to the continuous time Divisia price index.34  Since the
Paasche and Laspeyres indices can differ considerably in some empirical applications, it
can be seen that Divisia’s idea is not all that helpful in determining a unique discrete time
index number formula.35  What is useful about the Divisia indices is the idea that as the
discrete unit of time gets smaller, discrete approximations to the Divisia indices can
approach meaningful economic indices under certain conditions.

E.  Fixed base versus chain indices

45.     In this section36, we discuss the merits of using the chain system for constructing
price indices in the time series context versus using the fixed base system.37

46.     The chain system38 measures the change in prices going from one period to a
subsequent period using a bilateral index number formula involving the prices and
quantities pertaining to the two adjacent periods.  These one period rates of change (the
links in the chain) are then cumulated to yield the relative levels of prices over the entire
period under consideration.  Thus if the bilateral price index is P, the chain system
generates the following pattern of price levels for the first three periods:

(3.37)  1,  P(p0,p1,q0,q1),  P(p0,p1,q0,q1)P(p1,p2,q1,q2).

47.     On the other hand, the fixed base system of price levels using the same bilateral
index number formula P simply computes the level of prices in period t relative to the
base period 0 as P(p0,pt,q0,qt).  Thus the fixed base pattern of price levels for periods 0,1
and 2 is:

(3.38) 1,  P(p0,p1,q0,q1),  P(p0,p2,q0,q2).

                                                
33 “As the elementary formula of the chaining, we may get Laspeyre’s or Paasche’s or Edgeworth’s or
nearly any other formula, according as we choose the approximation principle for the steps of the numerical
integration.”  Ragnar Frisch (1936; 8).
34 Diewert (1980; 444) also obtained the Paasche and Laspeyres approximations to the Divisia index using
a somewhat different approximation argument.  He also showed how several other popular discrete time
index number formulae could be regarded as approximations to the continuous time Divisia index.
35 Trivedi (1981) systematically examined the problems involved in finding a “best” discrete time
approximation to the Divisia indices using the techniques of numerical analysis.  However, these numerical
analysis techniques depend on the assumption that the “true” continuous time micro price functions, pi(t),
can be adequately represented by a polynomial approximation.  Thus we are led to the conclusion that the
“best” discrete time approximation to the Divisia index depends on assumptions that are difficult to verify.
36 This section is largely based on Hill (1988) (1993; 385-390).
37 The results in Appendix 3.2 provide some theoretical support for the use of chain indices in that it is
shown that under certain conditions, the Divisia index will equal an economic index.  Hence any discrete
approximation to the Divisia index will approach the economic index as the time period gets shorter.  Thus
under certain conditions, chain indices will approach an underlying economic index.
38 The chain principle was introduced independently into the economics literature by Lehr (1885; 45-46)
and Marshall (1887; 373).  Both authors observed that the chain system would mitigate the difficulties due
to the introduction of new commodities into the economy, a point also mentioned by Hill (1993; 388).
Fisher (1911; 203) introduced the term “chain system”.
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48.     Note that in both the chain system and the fixed base system of price levels defined
by (3.37) and (3.38) above, we have set the base period price level equal to 1.  The usual
practice in statistical agencies is to set the base period price level equal to 100.  If this is
done, then it is necessary to multiply each of the numbers in (3.37) and (3.38) by 100.

49.     Due to the difficulties involved in obtaining current period information on
quantities (or equivalently, on expenditures), many statistical agencies base their
Consumer Price Index on the use of the Laspeyres formula (3.5) and the fixed base
system.  Therefore, it is of some interest to look at some of the possible problems
associated with the use of fixed base Laspeyres indices.

50.     The main problem with the use of fixed base Laspeyres indices is that the period 0
fixed basket of commodities that is being priced out in period t can often be quite
different from the period t basket.  Thus if there are systematic trends in at least some of
the prices and quantities39 in the index basket, the fixed base Laspeyres price index
PL(p0,pt,q0,qt) can be quite different from the corresponding fixed base Paasche price
index, PP(p0,pt,q0,qt).40  This means that both indices are likely to be an inadequate
representation of the movement in average prices over the time period under
consideration.

51.     The fixed base Laspeyres quantity index cannot be used forever:  eventually, the
base period quantities q0 are so far removed from the current period quantities qt that the
base must be changed.  Chaining is merely the limiting case where the base is changed
each period.41

52.     The main advantage of the chain system is that under normal conditions, chaining
will reduce the spread between the Paasche and Laspeyres indices.42  These two indices
each provide an asymmetric perspective on the amount of price change that has occurred
between the two periods under consideration and we would expect that a single point
estimate of the aggregate price change should lie between these two estimates. Thus the
use of either a chained Paasche or Laspeyres index will usually lead to a smaller
difference between the two and hence to estimates that are closer to the “truth”.

53.     Hill (1993; 388), drawing on the earlier research of Szulc (1983) and Hill (1988;
136-137), noted that it is not appropriate to use the chain system when prices oscillate (or
“bounce” to use Szulc’s (1983; 548) term).  This phenomenon can occur in the context of

                                                
39 Examples of rapidly downward trending prices and upward trending quantities are computers, electronic
equipment of all types, internet access and telecommunication charges.
40 Note that PL(p0,pt,q0,qt) will equal PP(p

0,pt,q0,qt) if either the two quantity vectors q0 and qt are
proportional or the two price vectors p0 and pt are proportional.  Thus in order to obtain a difference
between the Paasche and Laspeyres indices, we require relative change in both prices and quantities.
41 Regular seasonal fluctuations can cause monthly or quarterly data to “bounce” using the term due to
Szulc (1983) and chaining bouncing data can lead to a considerable amount of index “drift”; i.e., if after 12
months, prices and quantities return to their levels of a year earlier, then a chained monthly index will
usually not return to unity.  Hence, we do not recommend the use of chained indices for monthly or
quarterly data.
42 See Diewert (1978; 895) and Hill (1988) (1993; 387-388).
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regular seasonal fluctuations or in the context of price wars.  However, in the context of
roughly monotonically changing prices and quantities, Hill (1993; 389) recommended the
use of chained symmetrically weighted indices (see section C above).  The Fisher and
Walsh indices are examples of symmetrically weighted indices.

54.     It is of some interest to determine if there are index number formulae that give the
same answer when either the fixed base or chain system is used.  Comparing the
sequence of chain indices defined by (3.38) above to the corresponding fixed base
indices, it can be seen that we will obtain the same answer in all three periods if the index
number formula P satisfies the following functional equation for all price and quantity
vectors:

(3.39)  P(p0,p2,q0,q2) = P(p0,p1,q0,q1)P(p1,p2,q1,q2).

If an index number formula P satisfies (3.39), then we say that P satisfies the circularity
test.43

55.     If we assume that the index number formula P satisfies certain properties or tests in
addition to the circularity test above44, then Funke, Hacker and Voeller (1979) show that
P must have the following functional form due originally to Konüs and Byushgens45

(1926; 163-166):46

(3.40)  PKB(p0,p1,q0,q1) ≡ ∏i=1
n [pi

1/pi
0]αi

where the n constants αi satisfy the following restrictions:

(3.41)  ∑i=1
n αi = 1 and αi > 0 for i = 1,…,n.

Thus under very weak regularity conditions, the only price index satisfying the circularity
test is a weighted geometric average of all the individual price ratios, the weights being
constant through time.

                                                
43 The test name is due to Fisher (1922; 413) and the concept was originally due to Westergaard (1890;
218-219).
44 The additional tests are: (i) positivity and continuity of P(p0,p1,q0,q1) for all strictly positive price and
quantity vectors p0,p1,q0,q1; (ii) the identity test; (iii) the commensurability test; (iv) P(p0,p1,q0,q1) is
positively homogeneous of degree one in the components of p1 and (v) ) P(p0,p1,q0,q1) is positively
homogeneous of degree zero in the components of q1.  These tests will be explained in section E below.
45 Konüs and Byushgens show that the index defined by (3.40) is exact for Cobb-Douglas (1928)
preferences; see also Pollak (1989; 23).  The concept of an exact index number formula will be explained in
section H below.
46 This result can be derived using results in Eichhorn (1978; 167-168) and Vogt and Barta (1997; 47).  A
simple proof can be found in Balk (1995).  This result vindicates Irving Fisher’s (1922; 274) intuition who
asserted that “the only formulae which conform perfectly to the circular test are index numbers which have
constant weights…”  Fisher (1922; 275) went on to assert: “But, clearly, constant weighting is not
theoretically correct.  If we compare 1913 with 1914, we need one set of weights; if we compare 1913 with
1915, we need, theoretically at least, another set of weights. … Similarly, turning from time to space, an
index number for comparing the United States and England requires one set of weights, and an index
number for comparing the United States and France requires, theoretically at least, another.”
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56.     An interesting special case of the family of indices defined by (3.40) occurs when
the weights αi are all equal.  In this case, PKB reduces to the Jevons (1865) index:

(3.42)  PJ(p
0,p1,q0,q1) ≡ ∏i=1

n [pi
1/pi

0]1/n .

 57.     The problem with the indices defined by Konüs and Byushgens and Voeller and
Jevons is that the individual price ratios, pi

1/pi
0, have weights (either αi or 1/n ) that are

independent of the economic importance of commodity i in the two periods under
consideration.  Put another way, these price weights are independent of the quantities of
commodity i consumed or the expenditures on commodity i during the two periods.
Hence, these indices are not really suitable for use by statistical agencies at higher levels
of aggregation when expenditure share information is available.

58.     The above results indicate that it is not useful to ask that the price index P satisfy
the circularity test exactly.  However, it is of some interest to find index number formulae
that satisfy the circularity test to some degree of approximation since the use of such an
index number formula will lead to measures of aggregate price change that are more or
less the same no matter whether we use the chain or fixed base systems.  Irving Fisher
(1922; 284) found that deviations from circularity using his data set and the Fisher ideal
price index PF defined by (3.12) above were quite small.  This relatively high degree of
correspondence between fixed base and chain indices has been found to hold for other
symmetrically weighted formulae like the Walsh index PW defined by (3.19) above.47

Thus in most time series applications of index number theory where the base year in
fixed base indices is changed every 5 years or so, it will not matter very much whether
the statistical agency uses a fixed base price index or a chain index, provided that a
symmetrically weighted formula is used.48 This of course depends on the length of the
time series considered and the degree of variation in the prices and quantities as we go
from period to period.  The more prices and quantities are subject to large fluctuations
(rather than smooth trends), the less the correspondence.49

59.     It is possible to give a theoretical explanation for the approximate satisfaction of
the circularity test for symmetrically weighted index number formulae.  Another
symmetrically weighted formula is the Törnqvist index PT.50  The natural logarithm of
this index is defined as follows:

                                                
47 See for example Diewert (1978; 894).
48 More specifically, most superlative indices (which are symmetrically weighted) will satisfy the
circularity test to a high degree of approximation in the time series context.  See section H below for the
definition of a superlative index.  It is worth stressing that fixed base Paasche and Laspeyres indices are
very likely to diverge considerably over a 5 year period if computers (or any other commodity which has
price and quantity trends that are quite different from the trends in the other commodities) are included in
the value aggregate under consideration.  See Appendix 3.3 below for some “empirical” evidence on this
topic.
49 Again, see Szulc (1983) and Hill (1988).
50 This formula was explicitly defined in Törnqvist and Törnqvist (1937).
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(3.43)  ln PT(p0,p1,q0,q1) ≡ ∑i=1
n (1/2)(si

0 + si
1) ln (pi

1/pi
0)

where the period t expenditure shares si
t are defined by (3.7) above.  Alterman, Diewert

and Feenstra (1999; 61) show that if  the logarithmic price ratios ln (p i
t/pi

t-1) trend linearly
with time t and the expenditure shares si

t also trend linearly with time, then the Törnqvist
index PT will satisfy the circularity test exactly.51  Since many economic time series on
prices and quantities satisfy these assumptions approximately, then the Törnqvist index
PT will satisfy the circularity test approximately.  As we shall see in section H.6 below,
the Törnqvist index generally closely approximates the symmetrically weighted Fisher
and Walsh indices, so that for many economic time series, all three of these
symmetrically weighted indices will satisfy the circularity test to a high enough degree of
approximation so that it will not matter whether we use the fixed base or chain principle.

60.     We have already introduced various properties, axioms or tests that an index
number formula could satisfy in this chapter.  In the following section, we study the test
approach to index number theory in a more systematic manner.

F.  The axiomatic approach to price indices

F.1  Bilateral indices and some early tests

61.     In this section, our goal will be to assume that the bilateral price index formula,
P(p0,p1,q0,q1), satisfies a sufficient number of “reasonable” tests or properties so that the
functional form for P is determined.52  The word “bilateral”53 refers to the assumption
that the function P depends only on the data pertaining to the two situations or periods
being compared; i.e., P is regarded as a function of the two sets of price and quantity
vectors, p0,p1,q0,q1, that are to be aggregated into a single number that summarizes the
overall change in the n price ratios, p1

1/p1
0,…, pn

1/pn
0.

62.     We will take the perspective outlined in section B.1 above; i.e., along with the
price index P(p0,p1,q0,q1), there is a companion quantity index Q(p0,p1,q0,q1) such that the
product of these two indices equals the value ratio between the two periods.  Thus,
throughout this section, we assume that P and Q satisfy the product test, (3.3) above.
This means that as soon as the functional form for the price index P is determined, then
(3.3) can be used to determine the functional form for the quantity index Q.  However, a
further advantage of assuming that the product test holds is that we can assume that the
quantity index Q satisfies a “reasonable” property and then use (3.3) to translate this test
on the quantity index into a corresponding test on the price index P.54

                                                
51 This exactness result can be extended to cover the case when there are monthly proportional variations in
prices and the expenditure shares have constant seasonal effects in addition to linear trends; see Alterman,
Diewert and Feenstra (1999; 65).
52 Much of the material in this section is drawn from section sections 2 and 3 of Diewert (1992). For a
survey of the axiomatic approach see Balk (1995).
53 Multilateral index number theory refers to the situation where there are more than two situations whose
prices and quantities need to be aggregated.
54 This observation was first made by Fisher (1911; 400-406).  Vogt (1980) also pursued this idea.
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63.     If n = 1, so that there is only one price and quantity to be aggregated, then a natural
candidate for P is p1

1/p1
0 , the single price ratio, and a natural candidate for Q is q1

1/q1
0 ,

the single quantity ratio.  When the number of commodities or items to be aggregated is
greater than 1, then what index number theorists have done over the years is propose
properties or tests that the price index P should satisfy.  These properties are generally
multi-dimensional analogues to the one good price index formula, p1

1/p1
0.  Below, we list

twenty tests that turn out to characterize the Fisher ideal price index.

64.     We shall assume that every component of each price and quantity vector is
positive; i.e., pt  > > 0n  and qt  > > 0n 

55 for t = 0,1.  If we want to set q0 = q1 , we call the
common quantity vector q; if we want to set p0 = p1 , we call the common price vector p.

65.     Our first two tests are not very controversial and so we will not discuss them.

T1: Positivity 56: P(p0,p1,q0,q1) > 0.

T2: Continuity 57: P(p0,p1,q0,q1) is a continuous function of its arguments.

62.     Our next two tests are somewhat more controversial.

T3: Identity or Constant Prices Test 58:   P(p,p,q0,q1) = 1.

That is, if the price of every good is identical during the two periods, then the price index
should equal unity, no matter what the quantity vectors are.  The controversial part of this
test is that the two quantity vectors are allowed to be different in the above test.59

T4:     Fixed Basket or Constant Quantities Test 60: P(p0,p1,q,q) = ∑i=1
n pi

1qi /∑i=1
n pi

0qi.

                                                
55 Notation: q >> 0n means that each component of the vector q is positive; q ≥ 0n means each component of
q is nonnegative and q > 0n means q ≥ 0n and q ≠ 0n.
56 Eichhorn and Voeller (1976, 23) suggested this test.
57 Fisher (1922; 207-215) informally suggested the essence of this test.
58 Laspeyres (1871; 308), Walsh (1901; 308) and Eichhorn and Voeller (1976; 24) have all suggested this
test.  Laspeyres came up with this test or property to discredit the ratio of unit values index of Drobisch
(1871a), which does not satisfy this test.  This test is also a special case of Fisher’s (1911; 409-410) price
proportionality test.
59 Usually, economists assume that given a price vector p, the corresponding quantity vector q is uniquely
determined.  Here, we have the same price vector but the corresponding quantity vectors are allowed to be
different.
60 The origins of this test go back at least two hundred years to the Massachusetts legislature which used a
constant basket of goods to index the pay of Massachusetts soldiers fighting in the American Revolution;
see Willard Fisher (1913).  Other researchers who have suggested the test over the years include: Lowe
(1823, Appendix, 95), Scrope (1833, 406), Jevons (1865), Sidgwick (1883, 67-68), Edgeworth (1925, 215)
originally published in 1887, Marshall (1887, 363), Pierson (1895, 332), Walsh (1901, 540) (1921; 544),
and Bowley (1901, 227).  Vogt and Barta (1997; 49) correctly observe that this test is a special case of
Fisher’s (1911; 411) proportionality test for quantity indexes which Fisher (1911; 405) translated into a test
for the price index using the product test (3.3).
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That is, if quantities are constant during the two periods so that q0 = q1 ≡ q, then the price
index should equal the expenditure on the constant basket in period 1, ∑i=1

n pi
1qi, divided

by the expenditure on the basket in period 0, ∑i=1
n pi

0qi.

66.     If the price index P satisfies Test T4 and P and Q jointly satisfy the product test,
(3.3) above, then it is easy to show61 that Q must satisfy the identity test Q(p0,p1,q,q) = 1
for all strictly positive vectors p0,p1,q.  This constant quantities test for Q is also
somewhat controversial since p0 and p1 are allowed to be different.

67.     We turn now to some homogeneity tests for P.

F.2  Homogeneity tests

68.     The following four tests restrict the behavior of the price index P as the scale of
any one of the four vectors p0,p1,q0,q1 changes.

T5:     Proportionality in Current Prices 62: P(p0,λp1,q0,q1) = λP(p0,p1,q0,q1) for  λ  > 0.

That is, if all period 1 prices are multiplied by the positive number λ, then the new price
index is λ times the old price index.  Put another way, the price index function
P(p0,p1,q0,q1) is (positively) homogeneous of degree one in the components of the period
1 price vector p1.  Most index number theorists regard this property as a very fundamental
one that the index number formula should satisfy.

69.     Walsh (1901) and Fisher (1911; 418) (1922; 420) proposed the related
proportionality test P(p,λp,q0,q1) = λ.  This last test is a combination of T3 and T5; in fact
Walsh (1901, 385) noted that this last test implies the identity test, T3.

70.     In our next test, instead of multiplying all period 1 prices by the same number, we
multiply all period 0 prices by the number λ.

T6: Inverse Proportionality in Base Period  Prices 63: P(λp0,p1,q0,q1) =    λ−1P(p0,p1,q0,q1)
for  λ  > 0.

That is, if all period 0 prices are multiplied by the positive number λ, then the new price
index is 1/λ times the old price index.  Put another way, the price index function
P(p0,p1,q0,q1) is (positively) homogeneous of degree minus one in the components of the
period 0 price vector p0.

71.     The following two homogeneity tests can also be regarded as invariance tests.

                                                
61 See Vogt (1980; 70).
62 This test was proposed by Walsh (1901, 385), Eichhorn and Voeller (1976, 24) and Vogt (1980, 68).
63 Eichhorn and Voeller (1976; 28) suggested this test.
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T7:  Invariance to Proportional Changes in Current Quantities: P(p0,p1,q0,λq1) =
P(p0,p1,q0,q1) for all λ  > 0.

That is, if current period quantities are all multiplied by the number λ, then the price
index remains unchanged. Put another way, the price index function P(p0,p1,q0,q1) is
(positively) homogeneous of degree zero in the components of the period 1 quantity
vector q1.  Vogt (1980, 70) was the first to propose this test64 and his derivation of the test
is of some interest. Suppose the quantity index Q satisfies the quantity analogue to the
price test T5; i.e., suppose Q satisfies Q(p0,p1,q0,λq1) = λQ(p0,p1,q0,q1) for  λ  > 0. Then
using the product test (3.3), we see that P must satisfy T7.

T8:  Invariance to Proportional Changes in Base Quantities 65: P(p0,p1,λq0,q1) =
P(p0,p1,q0,q1) for all λ  > 0.

That is, if base period quantities are all multiplied by the number λ, then the price index
remains unchanged. Put another way, the price index function P(p0,p1,q0,q1) is
(positively) homogeneous of degree zero in the components of the period 0 quantity
vector q0.  If the quantity index Q satisfies the following counterpart to T8:
Q(p0,p1,λq0,q1) = λ−1Q(p0,p1,q0,q1) for all λ > 0, then using (3.3), the corresponding price
index P must satisfy T8.  This argument provides some additional justification for
assuming the validity of T8 for the price index function P.

72.     T7 and T8 together impose the property that the price index P does not depend on
the absolute magnitudes of the quantity vectors q0 and q1.

F.3  Invariance and symmetry tests

73.     The next five tests are invariance or symmetry tests.  Fisher (1922; 62-63, 458-460)
and Walsh (1921; 542) seem to have been the first researchers to appreciate the
significance of these kinds of tests.  Fisher (1922, 62-63) spoke of fairness but it is clear
that he had symmetry properties in mind.  It is perhaps unfortunate that he did not realize
that there were more symmetry and invariance properties than the ones he proposed; if he
had realized this, it is likely that he would have been able to provide an axiomatic
characterization for his ideal price index, as will be done in section F.6 below.  Our first
invariance test is that the price index should remain unchanged if the ordering of the
commodities is changed:

T9:  Commodity Reversal Test  (or invariance to changes in the ordering of commodities):
P(p0*,p1*,q0*,q1*) = P(p0,p1,q0,q1)

where pt* denotes a permutation of the components of the vector pt  and qt*  denotes the
same permutation of the components of qt for t = 0,1. This test is due to Irving Fisher

                                                
64 Fisher (1911; 405) proposed the related test P(p0,p1,q0,λq0) = P(p0,p1,q0,q0) = ∑i=1

n pi
1qi

0/∑i=1
n pi

0qi
0.

65 This test was proposed by Diewert (1992; 216).
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(1922),  and it is one of his three famous reversal tests.  The other two are the time
reversal test and the factor reversal test which will be considered below.

T10:  Invariance to Changes in the Units of Measurement  (commensurability test):
P(α1p1

0,...,αnpn
0; α1p1

1,...,αnpn
1; α1

−1q1
0,...,αn

−1qn
0; α1

−1q1
1,...,αn

−1qn
1) =

P(p1
0,...,pn

0; p1
1,...,pn

1; q1
0,...,qn

0; q1
1,...,qn

1) for all  α1 > 0, …, αn > 0.

That is, the price index does not change if the units of measurement for each commodity
are changed.  The concept of this test was due to Jevons (1884; 23) and the Dutch
economist Pierson (1896; 131), who criticized several index number formula for not
satisfying this fundamental test.  Fisher (1911; 411) first called this test the change of
units test and later, Fisher (1922; 420) called it the commensurability test.

T11:  Time Reversal Test:  P(p0,p1,q0,q1) = 1/P(p1,p0,q1,q0).

That is, if the data for periods 0 and 1 are interchanged, then the resulting price index
should equal the reciprocal of the original price index.  Obviously, in the one good case
when the price index is simply the single price ratio; this test is satisfied (as are all of the
other tests listed in this section).  When the number of goods is greater than one, many
commonly used price indices fail this test; e.g., the Laspeyres (1871) price index, PL

defined earlier by (3.5), and the Paasche (1874) price index, PP defined earlier by (3.6),
both fail this fundamental test.  The concept of the test was due to Pierson (1896; 128),
who was so upset with the fact that many of the commonly used index number formulae
did not satisfy this test, that he proposed that the entire concept of an index number
should be abandoned.  More formal statements of the test were made by Walsh (1901;
368) (1921; 541) and Fisher (1911; 534) (1922; 64).

74.     Our next two tests are more controversial, since they are not necessarily consistent
with the economic approach to index number theory.  However, these tests are quite
consistent with the weighted stochastic approach to index number theory to be discussed
later in this chapter.

T12:  Quantity Reversal Test (quantity weights symmetry test): P(p0,p1,q0,q1) =
P(p0,p1,q1,q0).

That is, if the quantity vectors for the two periods are interchanged, then the price index
remains invariant.  This property means that if quantities are used to weight the prices in
the index number formula, then the period 0 quantities q0 and the period 1 quantities q1

must enter the formula in a symmetric or even handed manner.  Funke and Voeller (1978;
3) introduced this test; they called it the weight property.

75.     The next test is the analogue to T12 applied to quantity indices:

T13:  Price Reversal Test (price weights symmetry test)66:

                                                
66 This test was proposed by Diewert (1992;218).
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{∑i=1
n pi

1 qi
1/ ∑i=1

n pi
0 qi

0}/P(p0,p1,q0,q1) = {∑i=1
n pi

0 qi
1/ ∑i=1

n pi
1 qi

0}/P(p1,p0,q0,q1).

Thus if we use (3.4) to define the quantity index Q in terms of the price index P, then it
can be seen that T13 is equivalent to the following property for the associated quantity
index Q:

(344)  Q(p0,p1,q0,q1) = Q(p1,p0,q0,q1).

That is, if the price vectors for the two periods are interchanged, then the quantity index
remains invariant.  Thus if prices for the same good in the two periods are used to weight
quantities in the construction of the quantity index, then property T13 implies that these
prices enter the quantity index in a symmetric manner.

F.4  Mean value tests

76.     The next three tests are mean value tests.

T14:  Mean Value Test for Prices 67:
         mini (pi

1/pi
0 : i=1,...,n) ≤ P(p0,p1,q0,q1) ≤ maxi (pi

1/pi
0 : i = 1,...,n).

That is, the price index lies between the minimum price ratio and the maximum price
ratio.  Since the price index is supposed to be some sort of an average of the n price
ratios, pi

1/pi
0, it seems essential that the price index P satisfy this test.

77.     The next test is the analogue to T14 applied to quantity indices:

T15:  Mean Value Test for Quantities 68:
         mini (qi

1/qi
0 : i=1,...,n) ≤ {V1/V0}/ P(p0,p1,q0,q1) ≤ maxi (qi

1/qi
0 : i = 1,...,n)

where Vt is the period t value for the aggregate defined by (3.2) above.  Using (3.4) to
define the quantity index Q in terms of the price index P, we see that T15 is equivalent to
the following property for the associated quantity index Q:

(3.45) mini (qi
1/qi

0 : i=1,...,n) ≤ Q(p0,p1,q0,q1) ≤ maxi (qi
1/qi

0 : i = 1,...,n).

That is, the implicit quantity index Q defined by P lies between the minimum and
maximum rates of growth qi

1/qi
0 of the individual quantities.

78.     In section C.1, we argued that it was very reasonable to take an average of the
Laspeyres and Paasche price indices as a single “best” measure of overall price change.
This point of view can be turned into a test:

T16:  Paasche and Laspeyres Bounding Test 69:  The price index P lies between the
Laspeyres and Paasche indices, PL and PP, defined by (3.5) and (3.6) above.
                                                
67 This test seems to have been first proposed by Eichhorn and Voeller (1976; 10).
68 This test was proposed by Diewert (1992; 219).
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We could propose a test where the implicit quantity index Q that corresponds to P via
(3.4) is to lie between the Laspeyres and Paasche quantity indices, QL and QP, defined by
(3.10) and (3.11) above.  However, the resulting test turns out to be equivalent to test
T16.

F.5  Monotonicity tests

79.     Our final four tests are monotonicity tests; i.e., how should the price index
P(p0,p1,q0,q1)  change as any component of the two price vectors p0 and p1 increases or as
any component of the two quantity vectors q0 and q1 increases.

T17:  Monotonicity in Current Prices: P(p0,p1,q0,q1) < P(p0,p2,q0,q1) if p1 < p2.

That is, if some period 1 price increases, then the price index must increase, so that
P(p0,p1,q0,q1) is increasing in the components of p1.  This property was proposed by
Eichhorn and Voeller (1976; 23) and it is a very reasonable property for a price index to
satisfy.

T18:  Monotonicity in Base Prices: P(p0,p1,q0,q1) > P(p2,p1,q0,q1) if p0 < p2.

That is, if any period 0 price increases, then the price index must decrease, so that
P(p0,p1,q0,q1) is decreasing in the components of p0 .  This very reasonable property was
also proposed by Eichhorn and Voeller (1976; 23).

T19:  Monotonicity in Current Quantities: if  q1 < q2, then
         {∑i=1

n pi
1 qi

1/ ∑i=1
n pi

0 qi
0}/P(p0,p1,q0,q1) < {∑i=1

n pi
1 qi

2/ ∑i=1
n pi

0 qi
0}/P(p0,p1,q0,q2).

T20:  Monotonicity in Base Quantities: if  q0 < q2, then
         {∑i=1

n pi
1 qi

1/ ∑i=1
n pi

0 qi
0}/P(p0,p1,q0,q1) > {∑i=1

n pi
1 qi

1/ ∑i=1
n pi

0 qi
2}/P(p0,p1,q0,q2).

If we define the implicit quantity index Q that corresponds to P using (3.4), we find that
T19 translates into the following inequality involving Q:

(3.46)  Q(p0,p1,q0,q1) < Q(p0,p1,q0,q2) if q1 < q2.

That is, if any period 1 quantity increases, then the implicit quantity index Q that
corresponds to the price index P must increase.  Similarly, we find that T20 translates
into:

(3.47)  Q(p0,p1,q0,q1) > Q(p0,p1,q2,q1) if q0 < q2.

That is, if any period 0 quantity increases, then the implicit quantity index Q must
decrease.  Tests T19 and T20 are due to Vogt (1980, 70).

                                                                                                                                                
69 Bowley (1901; 227) and Fisher (1922; 403) both endorsed this property for a price index.
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80.     This concludes our listing of tests.  In the next section, we ask whether any index
number formula P(p0,p1,q0,q1) exists that can satisfy all twenty tests.

F.6  The Fisher ideal index and the test approach

81.     It can be shown that the only index number formula P(p0,p1,q0,q1) which satisfies
tests T1 - T20 is the Fisher ideal price index PF  defined above by (3.12)70.  To prove this
assertion, it is relatively straightforward to show that the Fisher index satisfies all 20
tests.

82.     The more difficult part of the proof is to show that it is the only index number
formula which satisfies these tests.  This part of the proof follows from the fact that if P
satisfies the positivity test T1 and the three reversal tests, T11-T13, then P must equal PF.
To see this, rearrange the terms in the statement of test T13 into the following equation:

(3.48) {∑i=1
n pi

1 qi
1/ ∑i=1

n pi
0 qi

0}/{∑i=1
n pi

0 qi
1/ ∑i=1

n pi
1 qi

0}
                              = P(p0,p1,q0,q1) / P(p1,p0,q0,q1)
                              = P(p0,p1,q0,q1) / P(p1,p0,q1,q0)   using T12, the quantity reversal test
                              = P(p0,p1,q0,q1) P(p0,p1,q0,q1)     using T11, the time reversal test.

Now take positive square roots on both sides of (3.35) and we see that the left hand side
of the equation is the Fisher index PF(p0,p1,q0,q1) defined by (3.12) and the right hand
side is P(p0,p1,q0,q1).  Thus if P satisfies T1, T11, T12 and T13, it must equal the Fisher
ideal index PF.

83.     The quantity index that corresponds to the Fisher price index using the product test
(3.3) is QF , the Fisher quantity index, defined by (3.14).

84.     It turns out that P  satisfies yet another test, T21, which was Irving Fisher's (1921;
534) (1922; 72-81) third reversal test (the other two being T9 and T11):

T21:  Factor Reversal Test  (functional form symmetry test):
          P(p0,p1,q0,q1) P(q0,q1,p0,p1) = ∑i=1

n pi
1 qi

1/ ∑i=1
n pi

0 qi
0 .

A justification for this test is the following one:  if P(p0,p1,q0,q1) is a good functional
form for the price index, then if we reverse the roles of prices and quantities,
P(q0,q1,p0,p1) ought to be a good functional form for a quantity index (which seems to be
a correct argument) and thus the product of the price index P(p0,p1,q0,q1) and the quantity
index Q(p0,p1,q0,q1) = P(q0,q1,p0,p1) ought to equal the value ratio, V1 / V0 .  The second
part of this argument does not seem to be valid and thus many researchers over the years
have objected to the factor reversal test.  However, if one is willing to embrace T21 as a
basic test, Funke and Voeller (1978; 180) showed that the only index number function
P(p0,p1,q0,q1) which satisfies T1 (positivity), T11 (time reversal test), T12 (quantity

                                                
70 See Diewert (1992; 221).
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reversal test) and T21 (factor reversal test) is the Fisher ideal index PF  defined by (3.12).
Thus the price reversal test T13 can be replaced by the factor reversal test in order to
obtain a minimal set of four tests that lead to the Fisher price index.71

F.7  The test performance of other indices

85.     The Fisher price index P  satisfies all 20 of the tests listed in sections F.1-F.5
above.  Which tests do other commonly used price indices satisfy?  Recall the Laspeyres
index PL defined by (3.5), the Paasche index PP defined by (3.6), the Walsh index PW

defined by (3.19) and the Törnqvist index PT defined by (3.43).

86.     Straightforward computations show that the Paasche and Laspeyres price indices,
PL and PP, fail only the three reversal tests, T11, T12 and T13.  Since the quantity and
price reversal tests, T12 and T13, are somewhat controversial and hence can be
discounted, the test performance of PL and PP seems at first sight to be quite good.
However, the failure of the time reversal test, T11, is a severe limitation associated with
the use of these indices.

87.     The Walsh price index, PW, fails four tests:  T13, the price reversal test; T16, the
Paasche and Laspeyres bounding test; T19, the monotonicity in current quantities test;
and T20, the monotonicity in base quantities test.

88.     Finally, the Törnqvist price index PT fails nine tests: T4 (the fixed basket test), the
quantity and price reversal tests T12 and T13, T15 (the mean value test for quantities),
T16 (the Paasche and Laspeyres bounding test) and the 4 monotonicity tests T17 to T20.
Thus the Törnqvist index is subject to a rather high failure rate.72

89.     The conclusion we draw from the above results is that from the viewpoint of the
test approach to index numbers, the Fisher ideal price index PF appears to be “best” since
it satisfies all 20 tests.73  The Paasche and Laspeyres indices are next best if we treat each
test as being equally important.  However, both of these indices fail the very important
time reversal test.  The remaining two indices, the Walsh and Törnqvist price indices,
both satisfy the time reversal test but the Walsh index emerges as being “better” since it
passes 16 of our 20 tests whereas the Törnqvist only satisfies 11 tests.

F.8  The additivity test

                                                
71  Other characterizations of the Fisher price index can be found in Funke and Voeller (1978) and Balk
(1985) (1995).
72 However, we shall show later in section H.5 and Appendix 3.3 that the Törnqvist index approximates the
Fisher index quite closely using “normal” time series data that is subject to relatively smooth trends.  Hence
under these circumstances, the Törnqvist index can be regarded as passing the 20 tests to a reasonably high
degree of approximation.
73 This assertion needs to be qualified: there are many other tests which we have not discussed and price
statisticians could differ on the importance of satisfying various sets of tests.  Some references which
discuss other tests are Eichhorn and Voeller (1976), Balk (1995) and Vogt and Barta (1997).
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90.     There is an additional test that many national income accountants regard as very
important: the additivity test.  This is a test or property that is placed on the implicit
quantity index Q(p0,p1,q0,q1) that corresponds to the price index P(p0,p1,q0,q1) using the
product test (3.3).  This test states that the implicit quantity index has the following form:

(3.49)  Q(p0,p1,q0,q1) = ∑i=1
n pi*qi

1 / ∑m=1
n pm*qm

0

where the common across periods price for commodity i, pi* for i = 1,…,n, can be a
function of all 4n prices and quantities pertaining to the two periods or situations under
consideration, p0,p1,q0,q1.  In the literature on making multilateral comparisons (i.e.,
comparisons between more than two situations), it is quite common to assume that the
quantity comparison between any two regions can be made using the two regional
quantity vectors, q0 and q1, and a common reference price vector, p* ≡ (p1*,…,pn*).74

91.     Obviously, different versions of the additivity test can be obtained if we place
further restrictions on precisely which variables each reference price pi* depends.  The
simplest such restriction is to assume that each pi* depends only on the commodity i
prices pertaining to each of the two situations under consideration, pi

0 and pi
1.  If we

further assume that the functional form for the weighting function is the same for each
commodity, so that pi* = m(pi

0,pi
1) for i = 1,…,n, then we are led to the unequivocal

quantity index postulated by Knibbs (1924; 44).

92.     The theory of the unequivocal quantity index (or the pure quantity index75)
parallels the theory of the pure price index outlined in section C.2 above.  We give a brief
outline of this theory.  Let the pure quantity index QK have the following functional form:

(3.50)  QK(p0,p1,q0,q1)  ≡ ∑i=1
n qi

1 m(pi
0,pi

1) / ∑k=1
n qk

0 m(pk
0,pk

1).

We assume that the price vectors p0 and p1 are strictly positive and the quantity vectors q0

and q1 are nonnegative but have at least one positive component.76  Our problem is to
determine the functional form for the averaging function m if possible.  To do this, we
need to impose some tests or properties on the pure quantity index QK.  As was the case
with the pure price index, it is very reasonable to ask that the quantity index satisfy the
time reversal test:

(3.51)  QK(p1,p0,q1,q0) = 1/QK(p0,p1,q0,q1).

As was the case with the theory of the unequivocal price index, it can be seen that if the
unequivocal quantity index QK is to satisfy the time reversal test (3.51), the mean

                                                
74 Hill (1993; 395-397) termed such multilateral methods the block approach while Diewert (1996; 250-
251) (1999) used the term average price approaches.  Diewert (1999; 19) used the term additive
multilateral system .  For axiomatic approaches to multilateral index number theory, see Balk (1996a) and
Diewert (1999).
75 Diewert (2001) used this term.
76 We assume that m(a,b) has the following two properties: m(a,b) is a positive and continuous function,
defined for all positive numbers a and b and m(a,a) = a for all a > 0.
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function in (3.50) must be symmetric.  We also ask that QK satisfy the following
invariance to proportional changes in current prices test.

(3.52)  QK(p0,λp1,q0, q1) = QK(p0,p1,q0,q1) for all p0,p1,q0,q1 and all λ > 0.

The idea behind the invariance test (3.52) is this: the quantity index QK(p0,p1,q0,q1)
should only depend on the relative prices in each period and it should not depend on the
amount of inflation between the two periods.  Another way to interpret test (3.52) is to
look at what the test implies for the corresponding implicit price index, PIK, defined using
the product test (3.5).  It can be shown that if QK satisfies (3.52), then the corresponding
implicit price index PIK will satisfy test T5 above, the proportionality in current prices
test.  The two tests, (3.51) and (3.52), enable us to determine the precise functional form
for the pure quantity index QK defined by (3.50) above:  the pure quantity index or
Knibbs’ unequivocal quantity index QK must be the Walsh quantity index QW

77 defined
by:

(3.53)  QW(p0,p1,q0,q1) ≡ ∑i=1
n qi

1(pi
0 pi

1)1/2 / ∑k=1
n qk

0(pk
0 pk

1)1/2 .

93.     Thus with the addition of two tests, the pure price index PK must be the Walsh
price index PW defined by (3.19) and with the addition of the same two tests (but applied
to quantity indices instead of price indices), the pure quantity index QK must be the
Walsh quantity index QW defined by (3.53).  However, note that the product of the Walsh
price and quantity indices is not equal to the expenditure ratio, V1/V0.  Thus believers in
the pure or unequivocal price and quantity index concepts have to choose one of these
two concepts; they both cannot apply simultaneously.78

94.     If the quantity index Q(p0,p1,q0,q1) satisfies the additivity test (3.49) for some price
weights pi*, then we can rewrite the percentage change in the quantity aggregate,
Q(p0,p1,q0,q1) − 1, as follows:

(3.54)  Q(p0,p1,q0,q1) − 1 = {∑i=1
n pi*qi

1 / ∑m=1
n pm*qm

0} − 1
                                         = {∑i=1

n pi*qi
1 − ∑m=1

n pi*qi
0} / ∑m=1

n pm*qm
0

                                         = ∑i=1
n wi{qi

1 − qi
0}

where the weight for commodity i, wi, is defined as

(3.55)  wi ≡ pi* / ∑m=1
n pm*qm

0     ; i = 1,…,n.

Note that the change in commodity i going from situation 0 to situation 1 is qi
1 − qi

0.
Thus the ith term on the right hand side of (3.54) is the contribution of the change in
commodity i to the overall percentage change in the aggregate going from period 0 to 1.
Business analysts often want statistical agencies to provide decompositions like (3.54)
above so that they can decompose the overall change in an aggregate into sector specific

                                                
77 This is the quantity index that corresponds to the price index 8 defined by Walsh (1921; 101).
78 Knibbs (1924) did not notice this point!
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components of change.79  Thus there is a demand on the part of users for additive
quantity indices.

95.     For the Walsh quantity index defined by (3.53), the ith weight is

(3.56)  wWi ≡ [pi
0pi

1]1/2 / ∑m=1
n [pm

0pm
1]1/2 qm

0     ; i = 1,…,n.

Thus the Walsh quantity index QW has a percentage decomposition into component
changes of the form (3.54) where the weights are defined by (3.56).

96.     It turns out that the Fisher quantity index QF defined by (3.14) also has an additive
percentage change decomposition of the form given by (3.54).80  The ith weight wFi for
this Fisher decomposition is rather complicated and depends on the Fisher quantity index
QF(p0,p1,q0,q1) as follows81:

(3.57)  wFi ≡ [wi
0 + {QF}2 wi

1]/[1 + QF] ;    i = 1,…,n

where QF is the value of the Fisher quantity index, QF(p0,p1,q0,q1) and the period t
normalized price for commodity i, wi

t, is defined as the period i price pi
t divided by the

period t expenditure on the aggregate:

(3.58)  wi
t ≡ pi

t / ∑m=1
n pm

t qm
t   ;  t = 0,1 ;   i = 1,…,n.

Using the weights wFi defined by (3.57) and (3.58), we obtain the following exact
decomposition for the Fisher ideal quantity index82:

(3.59)  QF(p0,p1,q0,q1) − 1 = ∑i=1
n wFi{qi

1 − qi
0}.

Thus the lack of additivity of the Fisher quantity index does not prevent it from having an
additive percentage change decomposition.

97.     Due to the symmetric nature of the Fisher price and quantity indices, it can be seen
that the Fisher price index PF defined by (3.12) also has the following additive percentage
change decomposition:

                                                
79 Business and government analysts also often demand an analogous decomposition of the change in price
aggregate into sector specific components that add up.
80 The Fisher quantity index also has an additive decomposition of the type defined by (3.49) due to Van
Ijzeren (1987; 6).  The ith reference price pi* is defined as pi* ≡ (1/2)p i

0 + (1/2)pi
1/PF(p

0,p1,q0,q1) for i =
1,…,n and where PF is the Fisher price index.  This decomposition was also independently derived by
Dikhanov (1997).  The Van Ijzeren decomposition for the Fisher quantity index is currently being used by
Bureau of Economic Analysis; see Moulton and Seskin (1999; 16) and  Ehemann, Katz and Moulton
(2000).
81 This decomposition was obtained by Diewert (2000b) and Reinsdorf, Diewert and Ehemann (2001).  For
an economic interpretation of this decomposition, see Diewert (2000b).
82 To verify the exactness of the decomposition, substitute (3.57) into (3.59) and solve the resulting
equation for QF.  We find that the solution is equal to QF defined by (3.14) above.
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(3.60)  PF(p0,p1,q0,q1) − 1 = ∑i=1
n vFi{pi

1 − pi
0}

where the commodity i weight vFi is defined as

(3.61)  vFi ≡ [vi
0 + {PF}2 vi

1]/[1 + PF] ;    i = 1,…,n

where PF is the value of the Fisher price index, PF(p0,p1,q0,q1) and the period t normalized
quantity for commodity i, v i

t, is defined as the period i quantity qi
t divided by the period t

expenditure on the aggregate:

(3.62)  vi
t ≡ qi

t / ∑m=1
n pm

t qm
t   ;  t = 0,1 ;   i = 1,…,n.

The above results show that while the Fisher price and quantity indices do not satisfy the
additivity test, the percentage change in each of these indices does have an exact additive
decomposition into components that give the contribution to the overall change in the
price (or quantity) index of the change in each price (or quantity).

G.  The stochastic approach to price indices

G.1  The early unweighted stochastic approach

98.     The stochastic approach to the determination of the price index can be traced back
to the work of Jevons and Edgeworth over a hundred years ago8 3 .  The basic idea behind
the (unweighted) stochastic approach is that each price relative, pi

1/pi
0 for i = 1,2,…,n can

be regarded as an estimate of a common inflation rate α between periods 0 and 184; i.e., it
is assumed that

(3.63)  pi
1/pi

0 = α + εi  ;  i = 1,2,…,n

where α is the common inflation rate and the εi are random variables with mean 0 and
variance σ2. The least squares or maximum likelihood estimator for α is the Carli (1764)
price index PC defined as

(3.64)  PC(p0,p1) ≡ ∑i=1
n (1/n) pi

1/pi
0.

A drawback of the Carli price index is that it does not satisfy the time reversal test, i.e.,
PC(p1,p0) ≠ 1/ PC(p0,p1)85.

                                                
83 For references to the literature, see Diewert (1993a; 37-38) (1995a) (1995b).
84 “In drawing our averages the independent fluctuations will more or less destroy each other; the one
required variation of gold will remain undiminished.”  W. Stanley Jevons (1884; 26).
85 In fact Fisher (1922; 66) noted that PC(p0,p1) PC(p1,p0) ≥ 1 unless the period 1 price vector p1 is
proportional to the period 0 price vector p0; i.e., Fisher showed that the Carli index has a definite upward
bias.  He urged statistical agencies not to use this formula.
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99.     Let us change our stochastic specification and assume that the logarithm of each
price relative, ln(pi

1/pi
0), is an unbiased estimate of the logarithm of the inflation rate

between periods 0 and 1, β say.  The counterpart to (3.63) is now:

(3.65)  ln(pi
1/pi

0) = β + εi  ;  i = 1,2,…,n

where β ≡ lnα and the εi are independently distributed random variables with mean 0 and
variance σ2. The least squares or maximum likelihood estimator for β is the logarithm of
the geometric mean of the price relatives.  Hence the corresponding estimate for the
common inflation rate α86 is the Jevons (1865) price index PJ defined earlier by (3.42);
namely as: PJ(p

0,p1) ≡ ∏i=1
n (pi

1/pi
0)1/n.

100.     The Jevons price index PJ does satisfy the time reversal test and hence is much
more satisfactory than the Carli index PC.  However, both the Jevons and Carli price
indices suffer from a fatal flaw: each price relative pi

1/pi
0 is regarded as being equally

important and is given an equal weight in the index number formulae (3.64) and (3.65).
Keynes was particularly critical of this unweighted stochastic approach to index number
theory.  He directed the following criticism towards this approach, which was vigorously
advocated by Edgeworth (1923):

“Nevertheless I venture to maintain that such ideas, which I have endeavoured to expound above as fairly
and as plausibly as I can, are root-and-branch erroneous.  The ‘errors of observation’, the ‘faulty shots
aimed at a single bull’s eye’ conception of the index number of prices, Edgeworth’s ‘objective mean
variation of general prices’, is the result of confusion of thought.  There is no bull’s eye.  There is no
moving but unique centre, to be called the general price level or the objective mean variation of general
prices, round which are scattered the moving price levels of individual things.  There are all the various,
quite definite, conceptions of price levels of composite commodities appropriate for various purposes and
inquiries which have been scheduled above, and many others too.  There is nothing else. Jevons was
pursuing a mirage.
     What is the flaw in the argument?  In the first place it assumed that the fluctuations of individual prices
round the ‘mean’ are ‘random’ in the sense required by the theory of the combination of independent
observations.  In this theory the divergence of one ‘observation’ from the true position is assumed to have
no influence on the divergences of other ‘observations’.  But in the case of prices, a movement in the price
of one commodity necessarily influences the movement in the prices of other commodities, whilst the
magnitudes of these compensatory movements depend on the magnitude of the change in expenditure on
the first commodity as compared with the importance of the expenditure on the commodities secondarily
affected.  Thus, instead of ‘independence’, there is between the ‘errors’ in the successive ‘observations’
what some writers on probability have called ‘connexity’, or, as Lexis expressed it, there is ‘sub-normal
dispersion’.
     We cannot, therefore, proceed further until we have enunciated the appropriate law of connexity.  But
the law of connexity cannot be enunciated without reference to the relative importance of the commodities

                                                
86 Greenlees (1999) pointed out that although (1/n) ∑i=1

n ln(pi
1/pi

0) is an unbiased estimator for β, the
corresponding exponential of this estimator, PJ defined by (3.65), will generally not be an unbiased
estimator for α under our stochastic assumptions.  To see this, let xi = ln pi

1/pi
0.  Taking expectations, we

have: E xi = β = ln α.  Define the positive, convex function f of one variable x by f(x) ≡ ex.  By Jensen’s
(1906) inequality, we have Ef(x) ≥ f(Ex).  Letting x equal the random variable xi, this inequality becomes:
E(pi

1/pi
0) = Ef(xi) ≥ f(E xi) = f(β) = eβ = eln α = α.  Thus for each n, we have E(pi

1/pi
0) ≥ α, and it can be seen

that the Jevons price index defined by (3.65) will generally have an upward bias under the usual stochastic
assumptions.
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affected—which brings us back to the problem that we have been trying to avoid, of weighting the items of
a composite commodity.”  John Maynard Keynes (1930; 76-77).

The main point Keynes seemed to be making in the above quotation is that prices in the
economy are not independently distributed from each other and from quantities.  In
current macroeconomic terminology, we can interpret Keynes as saying that a
macroeconomic shock will be distributed across all prices and quantities in the economy
through the normal interaction between supply and demand; i.e., through the workings of
the general equilibrium system.  Thus Keynes seemed to be leaning towards the
economic approach to index number theory (even before it was even developed to any
great extent), where quantity movements are functionally related to price movements.  A
second point that Keynes made in the above quotation is that there is no such thing as the
inflation rate; there are only price changes that pertain to well specified sets of
commodities or transactions; i.e., the domain of definition of the price index must be
carefully specified.87 A final point that Keynes made is that price movements must be
weighted by their economic importance; i.e., by quantities or expenditures.

101.     In addition to the above theoretical criticisms, Keynes also made the following
strong empirical attack on Edgeworth’s unweighted stochastic approach:

“The Jevons—Edgeworth “objective mean variation of general prices’, or ‘indefinite’ standard, has
generally been identified, by those who were not as alive as Edgeworth himself was to the subtleties of the
case, with the purchasing power of money—if only for the excellent reason that it was difficult to visualise
it as anything else.  And since any respectable index number, however weighted, which covered a fairly
large number of commodities could, in accordance with the argument, be regarded as a fair approximation
to the indefinite standard, it seemed natural to regard any such index as a fair approximation to the
purchasing power of money also.
     Finally, the conclusion that all the standards ‘come to much the same thing in the end’ has been
reinforced ‘inductively’ by the fact that rival index numbers (all of them, however, of the wholesale type)
have shown a considerable measure of agreement with one another in spite of their different compositions.
… On the contrary, the tables given above (pp. 53,55) supply strong presumptive evidence that over long
period as well as over short period the movements of the wholesale and of the consumption standards
respectively are capable of being widely divergent.”  John Maynard Keynes (1930; 80-81).

In the above quotation, Keynes noted that the proponents of the unweighted stochastic
approach to price change measurement were comforted by the fact that all of the then
existing (unweighted) indices of wholesale prices showed broadly similar movements.
However, Keynes showed empirically that his wholesale price indices moved quite
differently than his consumer price indices.

102.     In order to overcome the Keynesian criticisms of the unweighted stochastic
approach to index numbers, it is necessary to:

• have a definite domain of definition for the index number and
• weight the price relatives by their economic importance.88

                                                
87 See section B.1 above.
88 Walsh (1901) (1921; 82-83) also objected to the lack of weighting in the unweighted stochastic approach
to index number theory.
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We turn now to a discussion of alternative methods of weighting.

G.2  The weighted stochastic approach

103.     Walsh seems to have been the first index number theorist to point out that a
sensible stochastic approach to measuring price change means that individual price
relatives should be weighted according to their economic importance or their
transactions value in the two periods under consideration:

“It might seem at first sight as if simply every price quotation were a single item, and since every
commodity (any kind of commodity) has one price-quotation attached to it, it would seem as if price-
variations of every kind of commodity were the single item in question.  This is the way the question struck
the first inquirers into price-variations, wherefore they used simple averaging with even weighting.  But a
price-quotation is the quotation of the price of a generic name for many articles; and one such generic name
covers a few articles, and another covers many.  … A single price-quotation, therefore, may be the
quotation of the price of a hundred, a thousand, or a million dollar’s worths, of the articles that make up the
commodity named.  Its weight in the averaging, therefore, ought to be according to these money-unit’s
worth.”  Correa Moylan Walsh (1921; 82-83).

However, Walsh did not specify exactly how these economic weights should be
determined.

104.     Theil (1967; 136-137) proposed a solution to the lack of weighting in the Jevons
index, (3.65). He argued as follows. Suppose we draw price relatives at random in such a
way that each dollar of expenditure in the base period has an equal chance of being
selected. Then the probability that we will draw the ith price relative is equal to si

0 ≡
pi

0qi
0/ ∑k=1

n pk
0qk

0, the period 0 expenditure share for commodity i. Then the overall
mean (period 0 weighted) logarithmic price change is ∑i=1

n si
0 ln(pi

1/pi
0).89  Now repeat

the above mental experiment and draw price relatives at random in such a way that each
dollar of expenditure in period 1 has an equal probability of being selected. This leads to
the overall mean (period 1 weighted) logarithmic price change of ∑i=1

n si
1 ln(pi

1/pi
0).90

Each of these measures of overall logarithmic price change seems equally valid so we
could argue for taking a symmetric average of the two measures in order to obtain a final
single measure of overall logarithmic price change.  Theil91 argued that a nice symmetric
index number formula can be obtained if we make the probability of selection for the nth
price relative equal to the arithmetic average of the period 0 and 1 expenditure shares for
commodity n.  Using these probabilities of selection, Theil’s final measure of overall
logarithmic price change was

                                                
89 In Appendix 3.3, we will follow the terminology introduced by Vartia (1978; 272) and refer to this index
as the logarithmic Laspeyres index, PLL.  This terminology is briefer than the base weighted geometric
index.  An alternative terminology might be the geometric Laspeyres index.
90 In Appendix 3.3, we will follow the terminology introduced by Vartia (1978; 272) and refer to this index
as the logarithmic Paasche index, PLP.
91 “The price index number defined in (1.8) and (1.9) uses the n individual logarithmic price differences as
the basic ingredients.  They are combined linearly by means of a two stage random selection procedure:
First, we give each region the same chance _ of being selected, and second, we give each dollar spent in the
selected region the same chance (1/ma or 1/mb) of being drawn.” Henri Theil (1967; 138).
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(3.66)  lnPT(p0,p1,q0,q1) ≡ ∑i=1
n (1/2)(si

0 + si
1) ln(pi

1/pi
0).

Note that the index PT defined by (3.66) is equal to the Törnqvist index defined earlier by
(3.43).

105.     We can give the following statistical interpretation of the right hand side of
(3.66).  Define the ith logarithmic price ratio ri by:

(3.67)   ri ≡ ln(pi
1/pi

0)    for i = 1,…,n.

Now define the discrete random variable, R say, as the random variable which can take
on the values ri with probabilities ρi ≡ (1/2)[ s i

0 + si
1] for i = 1,…,n.  Note that since each

set of expenditure shares, si
0 and si

1, sums to one over i, the probabilities ρi will also sum
to one.  It can be seen that the expected value of the discrete random variable R is

 (3.68)  E[R] ≡ ∑i=1
n ρi ri = ∑i=1

n (1/2)(si
0 + si

1) ln(pi
1/pi

0) = lnPT(p0,p1,q0,q1)

using (3.66) and (3.65).  Thus the logarithm of the index PT can be interpreted as the
expected value of the distribution of the logarithmic price ratios in the domain of
definition under consideration, where the n discrete price ratios in this domain of
definition are weighted according to Theil’s probability weights, ρi ≡ (1/2)[ s i

0 + s i
1] for i

= 1,…,n.

106.     Taking antilogs of both sides of (3.66), we obtain the Törnqvist (1936) (1937)
Theil price index, PT.92  This index number formula has a number of good properties. In
particular, PT satisfies the proportionality in current prices test T5 and the time reversal
test T11 discussed in section F above.  These two tests can be used to justify Theil’s
(arithmetic) method of forming an average of the two sets of expenditure shares in order
to obtain his probability weights, ρi ≡ (1/2)[ si

0 + si
1] for i = 1,…,n.  Consider the

following symmetric mean class of  logarithmic index number formulae:

(3.69)  lnPs(p
0,p1,q0,q1) ≡ ∑i=1

n m(si
0,si

1) ln(pi
1/pi

0)

where m(si
0,si

1) is a positive function of the period 0 and 1 expenditure shares on
commodity i, s i

0 and s i
1 respectively.  In order for Ps to satisfy the time reversal test, it is

necessary that the function m be symmetric. Then it can be shown93 that for Ps to satisfy
test T5, m must be the arithmetic mean.  This provides a reasonably strong justification
for Theil’s choice of the mean function.

                                                
92 The sampling bias problem studied by Greenlees (1999) does not occur in the present context because
there is no sampling involved in definition (3.66): the sum of the pi

tqi
t over i for each period t is assumed to

equal the value aggregate Vt for period t.
93 See Diewert (2000a) and Balk and Diewert (2001).
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107.     The stochastic approach of Theil has another nice symmetry property.  Instead of
considering the distribution of the price ratios ri = ln pi

1/pi
0, we could also consider the

distribution of the reciprocals of these price ratios, say:

(3.70)   ti ≡ ln pi
0/pi

1      for i = 1,…,n
                = ln (pi

1/pi
0)−1

                = − ln (pi
1/pi

0)
                = − ri

where the last equality follows using definitions (3.67).  We can still associate the
symmetric probability, ρi ≡ (1/2)[ si

0 + si
1], with the ith reciprocal logarithmic price ratio

ti for i = 1,…,n. Now define the discrete random variable, T say, as the random variable
which can take on the values ti with probabilities ρi ≡ (1/2)[ si

0 + si
1] for i = 1,…,n.  It can

be seen that the expected value of the discrete random variable T is

(3.71)  E[T] ≡ ∑i=1
n ρi ti

                    = − ∑i=1
n  ρi ri                using (3.70)

                    = − E[R]                        using (3.68)
                    =  − lnPT(p0,p1,q0,q1).

Thus it can be seen that the distribution of the random variable T is equal to minus the
distribution of the random variable R.  Hence it does not matter whether we consider the
distribution of the original logarithmic price ratios, ri ≡ ln pi

1/pi
0, or the distribution of

their reciprocals, ti ≡ ln pi
0/pi

1: we obtain essentially the same stochastic theory.

108.     It is possible to consider weighted stochastic approaches to index number theory
where we look at the distribution of the price ratios, pi

1/pi
0, rather than the distribution of

the logarithmic price ratios, ln pi
1/pi

0.  Thus, again following in the footsteps of Theil,
suppose we draw price relatives at random in such a way that each dollar of expenditure
in the base period has an equal chance of being selected. Then the probability that we
will draw the ith price relative is equal to si

0, the period 0 expenditure share for
commodity i. Now the overall mean (period 0 weighted) price change is:

(3.72)  PL(p0,p1,q0,q1) =  ∑i=1
n si

0(pi
1/pi

0),

which turns out to be the Laspeyres price index, PL (recall (3.8) above).  This stochastic
approach is the natural one for studying sampling problems associated with implementing
a Laspeyres price index.

109.     Now repeat the above mental experiment and draw price relatives at random in
such a way that each dollar of expenditure in period 1 has an equal probability of being
selected. This leads to the overall mean (period 1 weighted) price change equal to:

(3.73)  PPal(p
0,p1,q0,q1)  = ∑i=1

n si
1(pi

1/pi
0).
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This is known as the Palgrave (1886) index number formula.94

110.     It can be verified that neither the Laspeyres nor Palgrave price indices satisfy the
time reversal test, T11.  Thus, again following in the footsteps of Theil, we might try to
obtain a formula that satisfied the time reversal test by taking a symmetric average of the
two sets of shares.  Thus we consider the following class of symmetric mean index
number formulae:

(3.74)  Pm(p0,p1,q0,q1) ≡ ∑i=1
n m(si

0,si
1) (pi

1/pi
0)

where m(si
0,si

1) is a symmetric function of the period 0 and 1 expenditure shares for
commodity i, s i

0 and si
1 respectively.  In order to interpret the right hand side of (3.74) as

an expected value of the price ratios pi
1/pi

0, it is necessary that

(3.75)  ∑i=1
n m(si

0,si
1)  = 1.

However, in order to satisfy (3.75), m must be the arithmetic mean.95  With this choice of
m, (3.75) becomes the following (unnamed) index number formula, Pu:

(3.76)  Pu(p
0,p1,q0,q1) ≡ ∑i=1

n (1/2)[si
0  + si

1](pi
1/pi

0).

Unfortunately, the unnamed index Pu does not satisfy the time reversal test either.96

111.     Instead of considering the distribution of the price ratios, pi
1/pi

0, we could also
consider the distribution of the reciprocals of these price ratios.  The counterparts to the
asymmetric indices defined earlier by (3.72) and (3.73) are now ∑i=1

n si
0(pi

0/pi
1) and

∑i=1
nsi

1(pi
0/pi

1) respectively.  These are (stochastic) price indices going backwards from
period 1 to 0.  In order to make these indices comparable with our previous forward
looking indices, we take the reciprocals of these indices (which leads to harmonic
averages) and obtain the following two indices:

(3.77)  PHL(p0,p1,q0,q1) ≡ [∑i=1
n si

0(pi
0/pi

1)]−1 ;

(3.78)  PHP(p0,p1,q0,q1)  ≡ [∑i=1
n si

1(pi
0/pi

1)]−1

                                     = [∑i=1
n si

1(pi
1/pi

0)−1 ]−1

                                     = PP(p0,p1,q0,q1)                               using (3.9) above.

Thus the reciprocal stochastic price index defined by (3.78) turns out to equal the fixed
basket Paasche price index, PP, defined earlier by (3.9). This stochastic approach is the
natural one for studying sampling problems associated with implementing a Paasche

                                                
94 It is formula number 9 in Fisher’s (1922; 466) listing of index number formulae.
95 For a proof of this assertion, see Balk and Diewert (2001).
96 In fact, this index suffers from the same upward bias as the Carli index in that we have
Pu(p

0,p1,q0,q1)Pu(p
1,p0,q1,q0) ≥ 1.  To prove this, note that the previous inequality is equivalent to

[Pu(p
1,p0,q1,q0)]−1 ≤ Pu(p

0,p1,q0,q1) and this inequality follows from the fact that a weighted harmonic mean
of n positive numbers is equal or less than the corresponding weighted arithmetic mean.
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price index.  The other asymmetrically weighted reciprocal stochastic price index defined
by (3.77) has no author’s name associated with it but it was noted by Irving Fisher (1922;
467) as his index number formula 13.  Vartia (1978;272) called this index the harmonic
Laspeyres index and we will use his terminology.  We can also consider the class of
symmetrically weighted reciprocal price indices defined as:

(3.79)  Pmr(p
0,p1,q0,q1) ≡ [∑i=1

n m(si
0,si

1) (pi
1/pi

0)−1 ]−1

where as usual, m(si
0,si

1) is a homogeneous symmetric mean of the period 0 and 1
expenditure shares on commodity i.  However, none of the indices defined by (3.77) –
(3.79) satisfy the time reversal test.

112.     The fact that Theil’s index number formula PT satisfies the time reversal test leads
us to prefer Theil’s index as the “best” weighted stochastic approach.

113.     The main features of the weighted stochastic approach to index number theory
can be summarized as follows.  It is first necessary to pick two periods and a transactions
domain of definition.  As usual, each value transaction for each of the n commodities in
our domain of definition is split up into price and quantity components. Then, assuming
there are no new commodities or no disappearing commodities, we have n price relatives
pi

1/pi
0 pertaining to the two situations under consideration along with the corresponding

2n expenditure shares. The weighted stochastic approach just assumes that these n
relative prices, or some transformation of these price relatives f(pi

1/pi
0), have a discrete

statistical distribution, where the ith probability, ρi = m(si
0,si

1), is a function of the
expenditure shares pertaining to commodity i in the two situations under consideration,
si

0 and si
1.  Different price indices result, depending on how one chooses the functions f

and m.  In Theil’s approach, the transformation function f was the natural logarithm and
the mean function m was the simple unweighted arithmetic mean.

114.     There is a third aspect to the weighted stochastic approach to index number theory
and that is we have to decide what single number best summarizes the distribution of the
n (possibly transformed) price relatives.  We chose the mean of the discrete distribution
as our “best” summary measure for the distribution of the (possibly transformed) price
relatives but other measures are possible.  In particular, the weighted median or various
trimmed means are often suggested as the “best” measure of central tendency because
these measures minimize the influence of outliers. However, a detailed discussion of
these alternative measures of central tendency is beyond the scope of this chapter.
Additional material on stochastic approaches to index number theory and references to
the literature can be found in Clements and Izan (1981) (1987), Selvanathan and Rao
(1994), Diewert (1995b), Cecchetti (1997) and Wynne (1997) (1999).

H.  Economic Approaches:  The case of one household

H.1  The Konüs cost of living index and observable bounds
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115.     In this subsection, we will outline the theory of the cost of living index for a
single consumer (or household) that was first developed by the Russian economist, A. A.
Konüs (1924).  This theory relies on the assumption of optimizing behavior on the part of
economic agents (consumers or producers).  Thus given a vector of commodity or input
prices pt that the agent faces in a given time period t, it is assumed that the corresponding
observed quantity vector qt is the solution to a cost minimization problem that involves
either the consumer’s preference or utility function f or the producer’s production
function f.97  Thus in contrast to the axiomatic approach to index number theory, the
economic approach does not assume that the two quantity vectors q0 and q1 are
independent of the two price vectors p0 and p1.  In the economic approach, the period 0
quantity vector  q0 is determined by the consumer’s preference function f and the period 0
vector of prices p0 that the consumer faces and the period 1 quantity vector q1 is
determined by the consumer’s preference function f and the period 1 vector of prices p1.

116.     We assume that “the” consumer has well defined preferences over different
combinations of the n consumer commodities or items.98  Each combination of items can
be represented by a positive vector q ≡ [q1,…,qn].  The consumer’s preferences over
alternative possible consumption vectors q are assumed to be representable by a
continuous, nondecreasing and concave99 utility function f.  Thus if f(q1) > f(q0), then the
consumer prefers the consumption vector q1 to q0.  We further assume that the consumer
minimizes the cost of achieving the period t utility level ut ≡ f(qt) for periods t = 0,1.
Thus we assume that the observed period t consumption vector qt solves the following
period t cost minimization problem:

(3.80)  C(ut,pt) ≡ min q {∑i=1
n pi

tqi :  f(q) = ut ≡ f(qt) }  = ∑i=1
n pi

tqi
t ;    t = 0,1.

The period t price vector for the n commodities under consideration that the consumer
faces is p t.  Note that the solution to the cost or expenditure minimization problem (3.80)
for a general utility level u and general vector of commodity prices p defines the
consumer’s cost function, C(u,p).  We shall use the cost function in order to define the
consumer’s cost of living price index.

117.     The Konüs (1924) family of true cost of living indices pertaining to two periods
where the consumer faces the strictly positive price vectors p0 ≡ (p1

0,…,pn
0) and p1 ≡

(p1
1,…,pn

1)  in periods 0 and 1 respectively is defined as the ratio of the minimum costs
of achieving the same utility level u ≡ f(q) where q ≡ (q1,…,qn) is a positive reference
quantity vector; i.e., we have

                                                
97 For a description of the economic theory of the input and output price indices, see Balk (1998).  In the
economic theory of the output price index, qt is assumed to be the solution to a revenue maximization
problem involving the output price vector pt.
98 In section H, these preferences are assumed to be invariant over time.  In section I, this assumption will
be relaxed (one of the environmental variables could be a time variable that shifts tastes).
99 f is concave if and only if f(λq1 + (1−λ)q2) ≥ λf(q1) + (1−λ)f(q2)  for all 0 ≤ λ ≤ 1 and all q1 >> 0n and q2

>> 0n. Note that q ≥ 0N means that each component of the N dimensional vector q is nonnegative, q >> 0N

means that each component of q is positive and q > 0N means that q ≥ 0N but q ≠ 0N; i.e., q is nonnegative
but at least one component is positive.
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(3.81)  PK(p0,p1,q) ≡ C[f(q),p1] / C[f(q),p0].

We say that definition (3.81) defines a family of price indices because there is one such
index for each reference quantity vector q chosen.

118.     It is natural to choose two specific reference quantity vectors q in definition
(3.81): the observed base period quantity vector q0 and the current period quantity vector
q1.  The first of these two choices leads to the following Laspeyres-Konüs true cost of
living index:

(3.82)  PK(p0,p1,q0) ≡ C[f(q0),p1] / C[f(q0),p0]
                                = C[f(q0),p1] / ∑i=1

n pi
0qi

0                                    using (3.80) for t = 0
                                = min q {∑i=1

n pi
1qi :  f(q) = f(q0) } / ∑i=1

n pi
0qi

0

                    using the definition of the cost minimization problem that defines C[f(q0),p1]
                                ≤ ∑i=1

n pi
1qi

0 / ∑i=1
n pi

0qi
0

                                           since q0 ≡ (q1
0,…,qn

0) is feasible for the minimization problem
                                = PL(p0,p1,q0,q1)

where PL is the Laspeyres price index defined by (3.5) above.  Thus the (unobservable)
Laspeyres-Konüs true cost of living index is bounded from above by the observable
Laspeyres price index.100

119.     The second of the two natural choices for a reference quantity vector q in
definition (3.81) leads to the following Paasche-Konüs true cost of living index:

(3.83)  PK(p0,p1,q1) ≡ C[f(q1),p1] / C[f(q1),p0]
                                = ∑i=1

n pi
1qi

1 / C[f(q1),p0]                                     using (3.80) for t = 1
                                = ∑i=1

n pi
1qi

1 / min q {∑i=1
n pi

0qi :  f(q) = f(q1) }
                    using the definition of the cost minimization problem that defines C[f(q1),p0]
                                ≥  ∑i=1

n pi
1qi

1 / ∑i=1
n pi

0qi
1

                                  since q1 ≡ (q1
1,…,qn

1) is feasible for the minimization problem and
                                  thus C[f(q1),p0] ≤ ∑i=1

n pi
0qi

1 and hence 1/C[f(q1),p0] ≥ 1/ ∑i=1
n pi

0qi
1

                                = PP(p0,p1,q0,q1)

where PP is the Paasche price index defined by (3.6) above.  Thus the (unobservable)
Paasche-Konüs true cost of living index is bounded from below by the observable
Paasche price index.101

120.     It is possible to illustrate the two inequalities (3.82) and (3.83) if there are only
two commodities; see Figure 1 below.

                                                
100 This inequality was first obtained by Konüs (1924) (1939; 17).  See also Pollak (1983).
101 This inequality is also due to Konüs (1924) (1939; 19).  See also Pollak (1983).
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Figure 1: The Laspeyres and Paasche bounds to the true cost of living
 q2
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1,q2

1)

                          q0*                                        q1*
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0,q2

0)

                                                                                                                         q1

O                           A    B            C                    D                         E   F

The solution to the period 0 cost minimization problem is the vector q0 and the straight
line through C represents the consumer’s period 0 budget constraint, the set of quantity
points q1,q2 such that p1

0q1 + p2
0q2 = p1

0q1
0 + p2

0q2
0.  The curved line through q0 is the

consumer’s period 0 indifference curve, the set of points q1,q2 such that f(q1,q2) =
f(q1

0,q2
0); i.e., it is the set of consumption vectors that give the same utility as the

observed period 0 consumption vector q0. The solution to the period 1 cost minimization
problem is the vector q1 and the straight line through D represents the consumer’s period
1 budget constraint, the set of quantity points q1,q2 such that p1

1q1 + p2
1q2 = p1

1q1
1 +

p2
1q2

1.  The curved line through q1 is the consumer’s period 1 indifference curve, the set
of points q1,q2 such that f(q1,q2) = f(q1

1,q2
1); i.e., it is the set of consumption vectors that

give the same utility as the observed period 1 consumption vector q1.  The point q0*

solves the hypothetical cost minimization problem of minimizing the cost of achieving
the base period utility level u0 ≡ f(q0) when facing the period 1 price vector p1 = (p1

1,p2
1).

Thus we have C[u0,p1] = p1
1q1

0* + p2
1q2

0* and the dashed line through A is the
corresponding isocost line p1

1q1 + p2
1q2 = C[u0,p1].  Note that the hypothetical cost line

through A is parallel to the actual period 1 cost line through D.  From (3.82), the
Laspeyres-Konüs true index is C[u0,p1] / [p1

0q1
0 + p2

0q2
0] while the ordinary Laspeyres

index is [p1
1q1

0 + p2
1q2

0] / [p1
0q1

0 + p2
0q2

0].  Since the denominators for these two indices
are the same, the difference between the indices is due to the differences in their
numerators.  In Figure 1, this difference in the numerators is expressed by the fact that the
cost line through A lies below the parallel cost line through B.  Now if the consumer’s
indifference curve through the observed period 0 consumption vector q0 were L shaped
with vertex at q0, then the consumer would not change his or her consumption pattern in
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response to a change in the relative prices of the two commodities while keeping a fixed
standard of living.  In this case, the hypothetical vector q0* would coincide with q0, the
dashed line through A would coincide with the dashed line through B and the true
Laspeyres-Konüs index would coincide with the ordinary Laspeyres index.  However, L
shaped indifference curves are not generally consistent with consumer behavior; i.e.,
when the price of a commodity decreases, consumers generally demand more of it.  Thus
in the general case, there will be a gap between the points A and B.  The magnitude of
this gap represents the amount of substitution bias between the true index and the
corresponding Laspeyres index; i.e., the Laspeyres index will generally be greater than
the corresponding true cost of living index, PK(p0,p1,q0).

121.     Figure 1 can also be used to illustrate the inequality (3.83).  First note that the
dashed lines through E and F are parallel to the period 0 isocost line through C.  The
point q1* solves the hypothetical cost minimization problem of minimizing the cost of
achieving the current period utility level u1 ≡ f(q1) when facing the period 0 price vector
p0 = (p1

0,p2
0).  Thus we have C[u1,p0] = p1

0q1
1* + p2

0q2
1* and the dashed line through E is

the corresponding isocost line p1
1q1 + p2

1q2 = C[u0,p1].  From (3.83), the Paasche-Konüs
true index is [p1

1q1
1 + p2

1q2
1] / C[u1,p0] while the ordinary Paasche index is [p1

1q1
1 +

p2
1q2

1] / [p1
0q1

1 + p2
0q2

1].  Since the numerators for these two indices are the same, the
difference between the indices is due to the differences in their denominators.  In Figure
1, this difference in the denominators is expressed by the fact that the cost line through E
lies below the parallel cost line through F. The magnitude of this difference represents the
amount of substitution bias between the true index and the corresponding Paasche index;
i.e., the Paasche index will generally be less than the corresponding true cost of living
index, PK(p0,p1,q1).  Note that this inequality goes in the opposite direction to the
previous inequality between the two Laspeyres indices.  The reason for this change in
direction is due to the fact that one set of differences between the two indices takes place
in the numerators of the two indices (the Laspeyres inequalities) while the other set takes
place in the denominators of the two indices (the Paasche inequalities).

122.     The bound (3.82) on the Laspeyres-Konüs true cost of living PK(p0,p1,q0) using
the base period level of utility as the living standard is one sided as is the bound (3.83) on
the Paasche-Konüs true cost of living PK(p0,p1,q1) using the current period level of utility
as the living standard.  In a remarkable result, Konüs (1924; 20) showed that there exists
an intermediate consumption vector q* that is on the straight line joining the base period
consumption vector q0 and the current period consumption vector q1 such that the
corresponding (unobservable) true cost of living index PK(p0,p1,q*) is between the
observable Laspeyres and Paasche indices, PL and PP.102  Thus we have the existence of a
number λ* between 0 and 1 such that

(3.84)  PL ≤ PK(p0,p1, λ*q0 + (1−λ*)q1) ≤ PP   or   PP ≤ PK(p0,p1, λ*q0 + (1−λ*)q1) ≤ PL.

The above inequalities are of some practical importance.  If the observable (in principle)
Paasche and Laspeyres indices are not too far apart, then taking a symmetric average of
                                                
102 For more recent applications of the Konüs method of proof, see Diewert (1983a;191) for an application
to the consumer context and Diewert (1983b; 1059-1061) for an application to the producer context.
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these indices should provide a good approximation to a true cost of living index where
the reference standard of living is somewhere between the base and current period living
standards.  To determine the precise symmetric average of the Paasche and Laspeyres
indices, we can appeal to the results in section C.1 above and take the geometric mean,
which is the Fisher price index.  Thus the Fisher ideal price index receives a fairly strong
justification as a good approximation to an unobservable theoretical cost of living index.

123.     The bounds (3.82)-(3.84) are the best bounds that we can obtain on true cost of
living indices without making further assumptions.  In subsequent subsections, we make
further assumptions on the class of utility functions that describe the consumer’s tastes
for the n commodities under consideration.  With these extra assumptions, we are able to
determine the consumer’s true cost of living exactly.

H.2  The true cost of living index when preferences are homothetic

124.     Up to now, the consumer’s preference function f did not have to satisfy any
particular homogeneity assumption.  For the remainder of this section, we assume that f is
(positively) linearly homogeneous103.  In the economics literature, this is known as the
assumption of homothetic preferences.104  This assumption is not strictly justified from
the viewpoint of actual economic behavior, but it leads to economic price indices that are
independent from the consumer’s standard of living.105  Under this assumption, the
consumer’s expenditure or cost function, C(u,p) defined by (3.80) above, decomposes as
follows.  For positive commodity prices p >> 0N and a positive utility level u, we have by
the definition of C as the minimum cost of achieving the given utility level u:

(3.85)  C(u,p)  ≡ min q {∑i=1
n piqi : f(q1,…,qn) ≥ u }

                        = min q {∑i=1
n piqi : (1/u)f(q1,…,qn) ≥ 1}  dividing by u > 0

                        = min q {∑i=1
n piqi : f(q1/u,…,qn/u) ≥ 1}   using the linear homogeneity of f

                        = u min q {∑i=1
n piqi/u : f(q1/u,…,qn/u) ≥ 1}

                                                
103 The linear homogeneity property means that f satisfies the following property: f(λq) = λf(q) for all λ > 0
and all q >> 0n. This assumption is fairly restrictive in the consumer context.  It implies that each
indifference curve is a radial projection of the unit utility indifference curve.  It also implies that all income
elasticities of demand are unity, which is contradicted by empirical evidence.
104 More precisely, Shephard (1953) defined a homothetic function to be a monotonic transformation of a
linearly homogeneous function.  However, if a consumer’s utility function is homothetic, we can always
rescale it to be linearly homogeneous without changing consumer behavior.  Hence, we simply identify the
homothetic preferences assumption with the linear homogeneity assumption.
105 This particular branch of the economic approach to index number theory is due to Shephard (1953)
(1970) and Samuelson and Swamy (1974).  Shephard in particular realized the importance of the
homotheticity assumption in conjunction with separability assumptions in justifying the existence of
subindices of the overall cost of living index.  It should be noted that if the consumer’s change in real
income or utility between the two periods under consideration is not too large, then assuming that the
consumer has homothetic preferences will lead to a true cost of living index which is very close to
Laspeyres-Konüs and Paasche-Konüs true cost of living indices defined above by (3.82) and (3.83).
Another way of justifying the homothetic preferences assumption is to use (3.134) below, which justifies
the use of the superlative Törnqvist-Theil index PT in the context of nonhomothetic preferences.  Since PT

is usually numerically close to other superlative indices that are derived using the homothetic preferences
assumption, it can be seen that the assumption of homotheticity will usually not be empirically misleading.
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                        = u min z {{∑i=1
n pizi : f(z1,…,zn) ≥ 1}      letting zi = qi/u

                        = u C(1,p)                                                  using definition (3.80) with u = 1
                        = u c(p)

where c(p) ≡ C(1,p) is the unit cost function that is corresponds to f.106  It can be shown
that the unit cost function c(p) satisfies the same regularity conditions that f satisfied; i.e.,
c(p) is positive, concave and (positively) linearly homogeneous for positive price
vectors.107  Substituting (3.85) into (3.80) and using ut = f(qt) leads to the following
equations:

(3.86)  ∑i=1
n pi

tqi
t = c(pt)f(qt)                                                       for t = 0,1.

Thus under the linear homogeneity assumption on the utility function f, observed period t
expenditure on the n commodities (the left hand side of (3.86) above) is equal to the
period t unit cost c(p t) of achieving one unit of utility times the period t utility level, f(qt),
(the right hand side of (3.86) above).  Obviously, we can identify the period t unit cost,
c(pt), as the period t price level Pt and the period t level of utility, f(qt), as the period t
quantity level Qt.108

125.     The linear homogeneity assumption on the consumer’s preference function f leads
to a simplification for the family of Konüs true cost of living indices, PK(p0,p1,q), defined
by (3.81) above.  Using this definition for an arbitrary reference quantity vector q, we
have:

(3.87)  PK(p0,p1,q) ≡ C[f(q),p1]/C[f(q),p0]
                              = c(p1)f(q)/c(p0)f(q)                       using (3.85) twice
                              = c(p1)/c(p0).

Thus under the homothetic preferences assumption, the entire family of Konüs true cost
of living indices collapses to a single index, c(p1)/c(p0), the ratio of the minimum costs of
achieving unit utility level when the consumer faces period 1 and 0 prices respectively.
Put another way, under the homothetic preferences assumption, PK(p0,p1,q) is
independent of the reference quantity vector q.

                                                
106 Economists will recognize the producer theory counterpart to the result C(u,p) = uc(p): if a producer’s
production function f is subject to constant returns to scale, then the corresponding total cost function
C(u,p) is equal to the product of the output level u times the unit cost c(p).
107 Obviously, the utility function f determines the consumer’s cost function C(u,p) as the solution to the
cost minimization problem in the first line of (3.85).  Then the unit cost function c(p) is defined as C(1,p).
Thus f determines c.  But we can also use c to determine f under appropriate regularity conditions.  In the
economics literature, this is known as duality theory.  For additional material on duality theory and the
properties of f and c, see Samuelson (1953), Shephard (1953) and Diewert  (1974) (1993b; 107-123).
108 There is also a producer theory interpretation of the above theory; i.e., let f be the producer’s (constant
returns to scale) production function, let p be a vector of input prices that the producer faces, let q be an
input vector and let u = f(q) be the maximum output that can be produced using the input vector q.  C(u,p)
≡ min q { ∑i=1

n piqi : f(q) ≥ u } is the producer’s cost function in this case and c(pt) can be identified as the
period t input price level while f(qt) is the period t aggregate input level.
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126.     If we use the Konüs true cost of living index defined by the right hand side of
(3.87) as our price index concept, then the corresponding implicit quantity index defined
using the product test (3.3) has the following form:

(3.88)  Q(p0,p1,q0,q1) ≡ ∑i=1
n pi

1qi
1 /{∑i=1

n pi
tqi

t PK(p0,p1,q)}     using (3.4)
                                   = c(p1)f(q1) /{c(p0)f(q0) PK(p0,p1,q)}       using (3.86) twice
                                   = c(p1)f(q1) /{c(p0)f(q0)[c(p1)/c(p0)]}      using (3.87)
                                   = f(q1)/f(q0).

Thus under the homothetic preferences assumption, the implicit quantity index that
corresponds to the true cost of living price index c(p1)/c(p0) is the utility ratio f(q1)/f(q0).
Since the utility function is assumed to be homogeneous of degree one, this is the natural
definition for a quantity index.

127.     In subsequent material, we will need two additional results from economic theory:
Wold’s Identity and Shephard’s Lemma.  Wold’s (1944; 69-71) (1953; 145) Identity is
the following result.  Assuming that the consumer satisfies the cost minimization
assumptions (3.80) for periods 0 and 1 and that the utility function f is differentiable at
the observed quantity vectors q0 and q1, it can be shown109 that the following equations
hold:

(3.89)  pi
t/ ∑k=1

n pk
tqk

t = [∂f(qt)/∂qi]/ ∑k=1
n qk

t ∂f(qt)/∂qk ;    t = 0,1 ;   k = 1,…,n

where ∂f(qt)/∂qi denotes the partial derivative of the utility function f with respect to the
ith quantity qi evaluated at the period t quantity vector qt.

128.     If we make the homothetic preferences assumption and assume that the utility
function is linearly homogeneous, then Wold’s Identity (3.89) simplifies into the
following equations which will prove to be very useful:110

(3.90)  pi
t/ ∑k=1

n pk
tqk

t = [∂f(qt)/∂qi]/f(q
t) ;    t = 0,1 ;   k = 1,…,n.

129.     Shephard’s (1953; 11) Lemma is the following result.  Consider the period t cost
minimization problem defined by (3.80) above.  If the cost function C(ut,pt) is
differentiable with respect to the components of the price vector p, then the period t
quantity vector qt is equal to the vector of first order partial derivatives of the cost
function with respect to the components of p; i.e., we have

                                                
109 To prove this, consider the first order necessary conditions for the strictly positive vector qt  to solve the
period t cost minimization problem.  The conditions of Lagrange with respect to the vector of q variables
are: pt = λt ∇f(qt) where λt is the optimal Lagrange multiplier and ∇f(qt) is the vector of first order partial
derivatives of f evaluated at qt.  Note that this system of equations is the price equals a constant times
marginal utility equations that are familiar to economists.  Now take the inner product of both sides of this
equation with respect to the period t quantity vector qt and solve the resulting equation for λt.  Substitute
this solution back into the vector equation pt = λt ∇f(qt) and we obtain (3.89).
110 Differentiate both sides of the equation f(λq) = λf(q) with respect to λ and then evaluate the resulting
equation at λ =1.  We obtain the equation ∑i=1

n fi(q)qi = f(q) where fi(q) ≡ ∂f(q)/∂qi.
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(3.91)  qi
t = ∂C(ut,pt)/∂pi ;                                  i = 1,…,n ; t = 0,1.

To explain why (3.91) holds, consider the following argument.  Because we are assuming
that the observed period t quantity vector q t solves the cost minimization problem defined
by C(ut,pt), then qt must be feasible for this problem so we must have f(qt) = ut.  Thus qt is
a feasible solution for the following cost minimization problem where the general price
vector p has replaced the specific period t price vector pt:

(3.92) C(ut,p) ≡ minq {∑i=1
n piqi : f(q1,…,qn) ≥ ut}

≤ ∑i=1
n piqi

t

where the inequality follows from the fact that qt ≡ (q1
t,…,qn

t) is a feasible (but usually
not optimal) solution for the cost minimization problem in (3.92).  Now define for each
strictly positive price vector p the function g(p) as follows:

(3.93) g(p) ≡ ∑i=1
n piqi

t − C(ut,p)

where as usual, p ≡ (p1,…,pn).  Using (3.92) and (3.93), it can be seen that g(p) is
minimized (over all strictly positive price vectors p) at p = pt.  Thus the first order
necessary conditions for minimizing a differentiable function of n variables hold, which
simplify to equations (3.91).

130.     If we make the homothetic preferences assumption and assume that the utility
function is linearly homogeneous, then using (3.85), Shephard’s Lemma (3.91) becomes:

(3.94)  qi
t = ut ∂c(pt)/∂pi ;                                                             i = 1,…,n ; t = 0,1.

Equations (3.86) can be rewritten as follows:

(3.95)  ∑i=1
n pi

tqi
t = c(pt)f(qt) = c(pt)ut                                          for t = 0,1.

Combining equations (3.94) and (3.95), we obtain the following system of equations:

(3.96)  qi
t / ∑k=1

n pk
tqk

t =  [∂c(pt)/∂pi] /c(pt) ;                                  i = 1,…,n ; t = 0,1.

Note the symmetry of equations (3.96) with equations (3.90).  It is these two sets of
equations that we shall use in subsequent material.

H.3  Superlative indices: the Fisher ideal index

131.     Suppose the consumer has the following utility function:

(3.97)  f(q1,…,qn) ≡ [∑i=1
n∑k=1

n aik qiqk]
1/2 ;  aik = aki   for all i and k.

Differentiating f(q) defined by (3.97) with respect to qi yields the following equations:
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(3.98)  fi(q) = (1/2)[∑j=1
n∑k=1

n ajk qjqk]−1/2 2∑k=1
n aik qk ;           i = 1,…,n

                    = ∑k=1
n aik qk / f(q)                                                  using (3.97)

where fi(q) ≡ ∂f(qt)/∂qi.  In order to obtain the first equation in (3.98), we need to use the
symmetry conditions, aik = aki.  Now evaluate the second equation in (3.98) at the
observed period t quantity vector qt ≡ (q1

t,…,qn
t) and divide both sides of the resulting

equation by f(qt).  We obtain the following equations:

(3.99)  fi(q
t)/f(qt) = ∑k=1

n aik qk
t / [f(qt)]2                                    t = 0,1 ; i = 1,…,n.

Assume cost minimizing behavior for the consumer in periods 0 and 1.  Since the utility
function f defined by (3.97) is linearly homogeneous and differentiable, equations (3.90)
will hold.  Now recall the definition of the Fisher ideal quantity index, QF defined by
(3.14) above:

(3.100)  QF(p0,p1,q0,q1) = [∑i=1
n pi

0qi
1/∑k=1

n pk
0qk

0]1/2 [∑i=1
n pi

1qi
1/∑k=1

n pk
1qk

0]1/2

              = [∑i=1
n fi(q

0)qi
1/f(q0)]1/2 [∑i=1

n pi
1qi

1/∑k=1
n pk

1qk
0]1/2           using (3.90) for t = 0

              = [∑i=1
n fi(q

0)qi
1/f(q0)]1/2 /[∑k=1

n pk
1qk

0 /∑i=1
n pi

1qi
1]1/2

              = [∑i=1
n fi(q

0)qi
1/f(q0)]1/2 /[∑i=1

n fi(q
1)qi

0 /f(q1)]1/2                using (3.90) for t = 1
              = [∑i=1

n∑k=1
n aik qk

0qi
1/[f(q0)]2]1/2 /[∑i=1

n ∑k=1
n aik qk

1qi
0 /[f(q1)]2]1/2 using (3.99)

              = [1/[f(q0)]2]1/2 / [1/[f(q1)]2]1/2                          using (3.98) and canceling terms
              = f(q1)/f(q0).

Thus under the assumption that the consumer engages in cost minimizing behavior during
periods 0 and 1 and has preferences over the n commodities that correspond to the utility
function defined by (3.97), the Fisher ideal quantity index QF is exactly equal to the true
quantity index, f(q1)/f(q0).111

132.     As was noted in section C.2 above, the price index that corresponds to the Fisher
quantity index QF using the product test (3.3) is the Fisher price index PF defined by
(3.12).  Let c(p) be the unit cost function that corresponds to the homogeneous quadratic
utility function f defined by (3.97).  Then using (3.95) and (3.100), it can be seen that

(3.101)  PF(p0,p1,q0,q1) = c(p1)/c(p0).

Thus under the assumption that the consumer engages in cost minimizing behavior during
periods 0 and 1 and has preferences over the n commodities that correspond to the utility
function defined by (3.97), the Fisher ideal price index PF is exactly equal to the true
price index, c(p1)/c(p0).

133.     A twice continuously differentiable function f(q) of n variables q ≡ (q1,…,qn) can
provide a second order approximation to another such function f*(q) around the point q*
if the level and all of the first and second order partial derivatives of the two functions

                                                
111 For the early history of this result, see Diewert (1976; 184).
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coincide at q*.  It can be shown112 that the homogeneous quadratic function f  defined by
(3.97) can provide a second order approximation to an arbitrary f* around any (strictly
positive) point q* in the class of linearly homogeneous functions.  Thus the homogeneous
quadratic functional form defined by (3.97) is a flexible functional form.113  Diewert
(1976; 117) termed an index number formula QF(p0,p1,q0,q1) that was exactly equal to the
true quantity index f(q1)/f(q0)  (where f is a flexible functional form) a superlative index
number formula.114  Equation (3.100) and the fact that the homogeneous quadratic
function f defined by (3.97) is a flexible functional form shows that the Fisher ideal
quantity index QF defined by (3.14) is a superlative index number formula.  Since the
Fisher ideal price index PF also satisfies (3.101) where c(p) is the unit cost function that is
generated by the homogeneous quadratic utility function, we also call PF a superlative
index number formula.

134.     It is possible to show that the Fisher ideal price index is a superlative index
number formula by a different route.  Instead of starting with the assumption that the
consumer’s utility function is the homogeneous quadratic function defined by (3.97), we
can start with the assumption that the consumer’s unit cost function is a homogeneous
quadratic.115  Thus we suppose that the consumer has the following unit cost function:

(3.102)  c(p1,…,pn) ≡ [∑i=1
n∑k=1

n bik pipk]
1/2

where the parameters bik satisfy the following symmetry conditions:

(3.103)  bik = bki   for all i and k.

Differentiating c(p) defined by (3.102) with respect to pi yields the following equations:

(3.104)  ci(p) = (1/2)[∑j=1
n∑k=1

n bjk pjpk]−1/2 2∑k=1
n bik pk ;           i = 1,…,n

                    = ∑k=1
n bik pk / c(p)                                                  using (3.102)

where c i(p) ≡ ∂c(pt)/∂pi.  In order to obtain the first equation in (3.104), we need to use
the symmetry conditions, (3.103).  Now evaluate the second equation in (3.104) at the
observed period t price vector pt ≡ (p1

t,…,pn
t) and divide both sides of the resulting

equation by c(pt).  We obtain the following equations:

(3.105)  ci(p
t)/c(pt) = ∑k=1

n bik pk
t / [c(pt)]2                                    t = 0,1 ; i = 1,…,n.

                                                
112 See Diewert (1976; 130) and let the parameter r equal 2.
113 Diewert (1974; 133) introduced this term to the economics literature.
114 Fisher (1922; 247) used the term superlative to describe the Fisher ideal price index.  Thus Diewert
adopted Fisher’s terminology but attempted to give some precision to Fisher’s definition of superlativeness.
Fisher defined an index number formula to be superlative if it approximated the corresponding Fisher ideal
results using his data set.
115 Given the consumer’s unit cost function c(p), Diewert (1974; 112) showed that the corresponding utility
function f(q) can be defined as follows: for a strictly positive quantity vector q, f(q) ≡ 1/ max p {∑i=1

n piqi :
c(p) = 1 }.
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As we are assuming cost minimizing behavior for the consumer in periods 0 and 1 and
since the unit cost function c defined by (3.102) is differentiable, equations (3.96) will
hold.  Now recall the definition of the Fisher ideal price index, PF given by (3.12) above:

(3.106)  PF(p0,p1,q0,q1) = [∑i=1
n pi

1qi
0/∑k=1

n pk
0qk

0]1/2 [∑i=1
n pi

1qi
1/∑k=1

n pk
0qk

1]1/2

              = [∑i=1
n pi

1ci(p
0)/c(p0)]1/2 [∑i=1

n pi
1qi

1/∑k=1
n pk

0qk
1]1/2           using (3.96) for t = 0

              = [∑i=1
n pi

1ci(p
0)/c(p0)]1/2 /[∑k=1

n pk
0qk

1 /∑i=1
n pi

1qi
1]1/2

              = [∑i=1
n pi

1ci(p
0)/c(p0)]1/2 /[∑i=1

n pi
0ci(p

1)/c(p1)]1/2                using (3.96) for t = 1
              = [∑i=1

n∑k=1
n bik pk

0pi
1/[c(p0)]2]1/2 /[∑i=1

n ∑k=1
n bik pk

1pi
0/[c(p1)]2]1/2 using (3.105)

              = [1/[c(p0)]2]1/2 / [1/[c(p1)]2]1/2                          using (3.103) and canceling terms
              = c(p1)/c(p0).

Thus under the assumption that the consumer engages in cost minimizing behavior during
periods 0 and 1 and has preferences over the n commodities that correspond to the unit
cost function defined by (3.102), the Fisher ideal price index PF is exactly equal to the
true price index, c(p1)/c(p0).116

135.     Since the homogeneous quadratic unit cost function c(p) defined by (3.102) is
also a flexible functional form, the fact that the Fisher ideal price index PF exactly equals
the true price index c(p1)/c(p0) means that PF is a superlative index number formula.117

136.     Suppose that the bik coefficients in (3.102) satisfy the following restrictions:

(3.107)  bik = bibk                                                 for i,k = i,…,n

where the n numbers bi are nonnegative.  In this special case of (3.102), it can be seen
that the unit cost function simplifies as follows:

(3.108)  c(p1,…,pn) ≡ [∑i=1
n∑k=1

n bibk pipk]
1/2

                                = [∑i=1
n bi pi ∑k=1

n bk pk]
1/2

                                = ∑i=1
n bi pi .

Substituting (3.108) into Shephard’s Lemma (3.94) yields the following expressions for
the period t quantity vectors, qt:

(3.109)  qi
t = ut ∂c(pt)/∂pi = bi u

t                                                           i = 1,…,n ; t = 0,1.

Thus if the consumer has the preferences that correspond to the unit cost function defined
by (3.102) where the bik satisfy the restrictions (3.107), then the period 0 and 1 quantity
vectors are equal to a multiple of the vector b ≡ (b1,…,bn); i.e., q0 = b u0 and q1 = b u1.
Under these assumptions, the Fisher, Paasche and Laspeyres indices, PF, PP and PL, all
                                                
116 This result was obtained by Diewert (1976; 133-134).
117 Note that we have shown that the Fisher index PF is exact for the preferences defined by (3.97) as well
as the preferences that are dual to the unit cost function defined by (3.102).  These two classes of
preferences do not coincide in general.  However, if the n by n symmetric matrix A of the aik has an
inverse, then it can readily be shown that the n by n matrix B of the bik will equal A−1.
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coincide.  However, the preferences which correspond to the unit cost function defined
by (3.108) are not consistent with normal consumer behavior since they imply that the
consumer will not substitute away from more expensive commodities to cheaper
commodities if relative prices change going from period 0 to 1.

H.4  Quadratic mean of order r superlative indices

137.     It turns out that there are many other superlative index number formulae; i.e.,
there exist many quantity indices Q(p0,p1,q0,q1) that are exactly equal to f(q1)/f(q0) and
many price indices P(p0,p1,q0,q1) that are exactly equal to c(p1)/c(p0) where the
aggregator function f or the unit cost function c is a flexible functional form.  We will
define two families of superlative indices below.

138.     Suppose the consumer has the following quadratic mean of order r utility
function:118

(3.110)  f r(q1,…,qn) ≡ [∑i=1
n∑k=1

n aik qi
r/2

 qk
r/2

 ]
1/r

where the parameters aik satisfy the symmetry conditions  aik = aki for all i and k and the
parameter r satisfies the restriction r ≠ 0.  Diewert (1976; 130) showed that the utility
function f r defined by (3.110) is a flexible functional form; i.e., it can approximate an
arbitrary twice continuously differentiable linearly homogeneous functional form to the
second order.  Note that when r = 2, f r equals the homogeneous quadratic function
defined by (3.97) above.

139.     Define the quadratic mean of order r quantity index Qr by:

(3.111)  Qr(p0,p1,q0,q1) ≡ {∑i=1
n si

0 (qi
1/qi

0)r/2}1/r {∑i=1
n si

1 (qi
1/qi

0)−r/2}−1/r

where si
t ≡ pi

tqi
t/∑k=1

n pk
tqk

t is the period t expenditure share for commodity i as usual.  It
can be verified that when r = 2, Qr simplifies into QF, the Fisher ideal quantity index.

140.     Using exactly the same techniques as were used in section H.3 above, it can be
shown that Qr is exact for the aggregator function f r defined by (3.110); i.e., we have

(3.112)  Qr(p0,p1,q0,q1) = f r(q1)/f r(q0).

Thus under the assumption that the consumer engages in cost minimizing behavior during
periods 0 and 1 and has preferences over the n commodities that correspond to the utility
function defined by (3.110), the quadratic mean of order r quantity index QF is exactly
equal to the true quantity index, f r(q1)/f r(q0).119  Since Qr is exact for f r and f r is a
flexible functional form, we see that the quadratic mean of order r quantity index Qr is a

                                                
118 This terminology is due to Diewert (1976; 129).
119 See Diewert (1976; 130).
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superlative index for each r ≠ 0.  Thus there are an infinite number of superlative quantity
indices.

141.     For each quantity index Qr, we can use the product test (3.3) in order to define the
corresponding implicit quadratic mean of order r price index Pr*:

(3.113)  Pr*(p0,p1,q0,q1) ≡ ∑i=1
n pi

1qi
1/{∑i=1

n pi
0qi

0 Qr(p0,p1,q0,q1)}
                                        = cr*(p1)/cr*(p0)

where cr* is the unit cost function that corresponds to the aggregator function f r defined
by (3.110) above.  For each r ≠0, the implicit quadratic mean of order r price index Pr* is
also a superlative index.

142.     When r = 2, Qr defined by (3.111) simplifies to QF, the Fisher ideal quantity index
and Pr* defined by (3.113) simplifies to PF, the Fisher ideal price index.  When r = 1, Qr

defined by (3.111) simplifies to:

(3.114)  Q1(p0,p1,q0,q1) ≡ {∑i=1
n si

0 (qi
1/qi

0)1/2}/{∑i=1
n si

1 (qi
1/qi

0)−1/2}
                          = [∑i=1

n pi
1qi

1/∑i=1
n pi

0qi
0]{∑i=1

n pi
0qi

0(qi
1/qi

0)1/2}/{∑i=1
n pi

1qi
1(qi

1/qi
0)−1/2}

                          = [∑i=1
n pi

1qi
1/∑i=1

n pi
0qi

0]{∑i=1
n pi

0(qi
0qi

1)1/2}/{∑i=1
n pi

1(qi
0qi

1)1/2}
                          = [∑i=1

n pi
1qi

1/∑i=1
n pi

0qi
0]/{∑i=1

n pi
1(qi

0qi
1)1/2/∑i=1

n pi
0(qi

0qi
1)1/2}

                          = [∑i=1
n pi

1qi
1/∑i=1

n pi
0qi

0]/ PW(p0,p1,q0,q1)

where PW is the Walsh price index defined previously by (3.19).  Thus P1* is equal to PW,
the Walsh price index, and hence it is also a superlative price index.

143.     Suppose the consumer has the following quadratic mean of order r unit cost
function:120

(3.115)  cr(p1,…,pn) ≡ [∑i=1
n∑k=1

n bik pi
r/2

 pk
r/2

 ]
1/r

where the parameters bik satisfy the symmetry conditions  bik = bki for all i and k and the
parameter r satisfies the restriction r ≠ 0.  Diewert (1976; 130) showed that the unit cost
function cr defined by (3.115) is a flexible functional form; i.e., it can approximate an
arbitrary twice continuously differentiable linearly homogeneous functional form to the
second order.  Note that when r = 2, cr equals the homogeneous quadratic function
defined by (3.102) above.

144.     Define the quadratic mean of order r price index Pr by:

(3.116)  Pr(p0,p1,q0,q1) ≡ {∑i=1
n si

0 (pi
1/pi

0)r/2}1/r {∑i=1
n si

1 (pi
1/pi

0)−r/2}−1/r

                                                
120 This terminology is due to Diewert (1976; 130).  This unit cost function was first defined by Denny
(1974).
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where si
t ≡ pi

tqi
t/∑k=1

n pk
tqk

t is the period t expenditure share for commodity i as usual.  It
can be verified that when r = 2, Pr simplifies into PF, the Fisher ideal quantity index.

145.     Using exactly the same techniques as were used in section H.3 above, it can be
shown that Pr is exact for the aggregator function cr defined by (3.115); i.e., we have

(3.117)  Pr(p0,p1,q0,q1) = cr(p1)/cr(p0).

Thus under the assumption that the consumer engages in cost minimizing behavior during
periods 0 and 1 and has preferences over the n commodities that correspond to the unit
cost function defined by (3.115), the quadratic mean of order r price index PF is exactly
equal to the true price index, cr(p1)/cr(p0).121  Since Pr is exact for cr and cr is a flexible
functional form, we see that the quadratic mean of order r price index Pr is a superlative
index for each r ≠ 0.  Thus there are an infinite number of superlative price indices.

146.     For each price index Pr, we can use the product test (3.3) in order to define the
corresponding implicit quadratic mean of order r quantity index Qr*:

(3.118)  Qr*(p0,p1,q0,q1) ≡ ∑i=1
n pi

1qi
1/{∑i=1

n pi
0qi

0 Pr(p0,p1,q0,q1)}
                                        = f r*(p1)/ f r*(p0)

where f r* is the aggregator function that corresponds to the unit cost function cr defined
by (3.115) above.122  For each r ≠0, the implicit quadratic mean of order r quantity index
Qr* is also a superlative index.

147.     When r = 2, Pr defined by (3.116) simplifies to PF, the Fisher ideal price index and
Qr* defined by (3.118) simplifies to QF, the Fisher ideal quantity index.  When r = 1, Pr

defined by (3.116) simplifies to:

(3.119)  P1(p0,p1,q0,q1) ≡ {∑i=1
n si

0 (pi
1/pi

0)1/2}/{∑i=1
n si

1 (pi
1/pi

0)−1/2}
                          = [∑i=1

n pi
1qi

1/∑i=1
n pi

0qi
0]{∑i=1

n pi
0qi

0(pi
1/pi

0)1/2}/{∑i=1
n pi

1qi
1(pi

1/pi
0)−1/2}

                          = [∑i=1
n pi

1qi
1/∑i=1

n pi
0qi

0]{∑i=1
n qi

0(pi
0pi

1)1/2}/{∑i=1
n qi

1(pi
0pi

1)1/2}
                          = [∑i=1

n pi
1qi

1/∑i=1
n pi

0qi
0]/{∑i=1

n qi
1(pi

0pi
1)1/2/∑i=1

n qi
0(pi

0pi
1)1/2}

                          = [∑i=1
n pi

1qi
1/∑i=1

n pi
0qi

0]/QW(p0,p1,q0,q1)

where QW is the Walsh quantity index defined previously by (3.53).  Thus Q1* is equal to
QW, the Walsh quantity index, and hence it is also a superlative quantity index.

H.5  Superlative indices:  The Törnqvist index

148.     In this subsection, we will revert to the assumptions made on the consumer in
subsection H.1 above.  In particular, we do not assume that the consumer’s utility
function f is necessarily linearly homogeneous as in sections H.2-H.4 above.

                                                
121 See Diewert (1976; 133-134).
122 The function fr* can be defined by using cr as follows: fr*(q) ≡ 1/ maxp {∑i=1

n piqi : c
r(p) = 1 }.
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149.     Before we derive our main result, we require a preliminary result.  Suppose the
function of n variables, f(z1,…,zn) ≡ f(z), is quadratic; i.e.,

(3.120)  f(z1,…,zn) ≡ a0 + ∑i=1
n ai zi + (1/2) ∑i=1

n ∑k=1
n aik zizk  ;  aik = aki for all i and k,

where the ai and the aik are constants.  Let fi(z) denote the first order partial derivative of f
evaluated at z with respect to the ith component of z, zi.  Let fik(z) denote the second
order partial derivative of f with respect to zi and zk.  Then it is well known that the
second order Taylor series approximation to a quadratic function is exact; i.e., if f is
defined by (3.120) above, then for any two points, z0 and z1, we have

(3.121)  f(z1) − f(z0) = ∑i=1
n fi(z

0)[zi
1−zi

0] + (1/2) ∑i=1
n ∑k=1

n fik(z
0)[zi

1−zi
0][zk

1−zk
0].

It is less well known that an average of two first order Taylor series approximations to a
quadratic function is also exact; i.e., if f is defined by (3.120) above, then for any two
points, z0 and z1, we have123

(3.122)  f(z1) − f(z0) = (1/2)∑i=1
n [fi(z

0) + fi(z
1)][zi

1−zi
0].

Diewert (1976; 118) and Lau (1979) showed that equation (3.122) characterized a
quadratic function and called the equation the quadratic approximation lemma.  We will
be more brief and refer to (3.122) as the quadratic identity.

150.     We now suppose that the consumer’s cost function ,124 C(u,p), has the following
translog functional form:125

(3.123)  lnC(u,p) ≡ a0 + ∑i=1
n ai lnpi + (1/2) ∑i=1

n ∑k=1
n aik lnpi lnpk

                                     + b0 lnu + ∑i=1
n bi lnpi lnu + (1/2) b00 [lnu]2

where ln is the natural logarithm function and the parameters ai, aik, and bi satisfy the
following restrictions:

(3.124)         aik = aki ;                                i,k = 1,…,n;
(3.125)  ∑i=1

n ai = 1 ;
(3.126)  ∑i=1

n bi = 0 ;
(3.127)  ∑k=1

n aik = 0 ;                               i = 1,…,n.

The parameter restrictions (3.125)-(3.127) ensure that C(u,p) defined by (3.123) is
linearly homogeneous in p, a property that a cost function must have.  It can be shown

                                                
123 To prove that (3.121) and (3.122) are true, use (3.120) and substitute into the left hand sides of (3.121)
and (3.122).  Then calculate the partial derivatives of the quadratic function defined by (3.120) and
substitute these derivatives into the right hand side of (3.121) and (3.122).
124 The consumer’s cost function was defined by (3.85) above.
125 Christensen, Jorgenson and Lau (1971) introduced this function into the economics literature.
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that the translog cost function defined by (3.123)-(3.127) can provide a second order
Taylor series approximation to an arbitrary cost function.126

151.     We assume that the consumer has preferences that correspond to the translog cost
function and that the consumer engages in cost minimizing behavior during periods 0 and
1.  Let p0 and p1 be the period 0 and 1 observed price vectors and let q0 and q1 be the
period 0 and 1 observed quantity vectors.  Thus we have:

(3.128)  C(u0,p0) = ∑i=1
n pi

0qi
0 and C(u1,p1) = ∑i=1

n pi
1qi

1

where C is the translog cost function defined above.  We can also apply Shephard’s
lemma, (3.91) above:

(3.129)  qi
t = ∂C(ut,pt)/∂pi ;                                  i = 1,…,n ; t = 0,1

                  = [C(ut,pt)/pi
t] ∂lnC(ut,pt)/∂lnpi.

Now use (3.128) to replace C(ut,pt) in (3.129).  After some cross multiplication, equations
(3.129) become the following system of equations:

(3.130)  pi
tqi

t / ∑k=1
n pk

1qk
1 ≡ si

t = ∂lnC(ut,pt)/∂lnpi ;                        i = 1,…,n ; t = 0,1 or

(3.131)  si
t = ai + ∑k=1

n aik lnpk
t + bi lnut ;                                         i = 1,…,n ; t = 0,1

where si
t is the period t expenditure share on commodity i and (3.131) follows from

(3.130) by differentiating (3.123) with respect to lnpi.

152.     Define the geometric average of the period 0 and 1 utility levels as u*; i.e., define

(3.132)  u* ≡ [u0u1]1/2 .

Now observe that the right hand side of the equation that defines the natural logarithm of
the translog cost function, equation (3.123), is a quadratic function of the variables zi ≡
lnpi if we hold utility constant at the level u*.  Hence we can apply the quadratic identity,
(3.122), and get the following equation:

(3.133)  lnC(u*,p1) − lnC(u*,p0)
= (1/2)∑i=1

n [∂lnC(u*,p0)/∂lnpi + ∂lnC(u*,p1)/∂lnpi ][lnpi
1−lnpi

0]
= (1/2)∑i=1

n [ai+∑k=1
n aik lnpk

0+bi lnu* + ai+∑k=1
n aik lnpk

1+bi lnu*][lnpi
1−lnpi

0]
                                                     differentiating (3.123) at the points (u*,p0) and (u*,p1)
= (1/2)∑i=1

n [ai+∑k=1
n aik lnpk

0+biln[u0u1]1/2+ai+∑k=1
n aik lnpk

1+biln[u0u1]1/2][lnpi
1−lnpi

0]
                                                                               using definition (3.132) for u*
= (1/2)∑i=1

n [ai+∑k=1
n aik lnpk

0+bi lnu0 + ai+∑k=1
n aik lnpk

1+bi lnu1][lnpi
1−lnpi

0]

                                                
126 It can also be shown that if all of the bi = 0 and b00 = 0, then C(u,p) = uC(1,p) ≡ uc(p); i.e., with these
additional restrictions on the parameters of the general translog cost function, we have homothetic
preferences.  Note that we also assume that utility u is scaled so that u is always positive.
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                                                                                                              rearranging terms
= (1/2)∑i=1

n [∂lnC(u0,p0)/∂lnpi + ∂lnC(u1,p1)/∂lnpi ][lnpi
1−lnpi

0]
                                                      differentiating (3.123) at the points (u0,p0) and (u1,p1)
= (1/2)∑i=1

n [si
0 + si

1][lnpi
1−lnpi

0]                                                                using (3.131).

The last equation in (3.133) can be recognized as the logarithm of the Törnqvist-Theil
index number formula PT defined earlier by (3.66).  Hence exponentiating both sides of
(3.133) yields the following equality between the true cost of living between periods 0
and 1, evaluated at the intermediate utility level u* and the observable Törnqvist-Theil
index PT:127

(3.134)  C(u*,p1)/C(u*,p0) = PT(p0,p1,q0,q1).

Since the translog cost function which appears on the left hand side of (3.134) is a
flexible functional form, the Törnqvist-Theil price index PT is also a superlative index.

153.     It is somewhat mysterious how a ratio of unobservable cost functions of the form
appearing on the left hand side of the above equation can be exactly estimated by an
observable index number formula but the key to this mystery is the assumption of cost
minimizing behavior and the quadratic identity (3.122) along with the fact that
derivatives of cost functions are equal to quantities, as specified by Shephard’s lemma,
(3.91).  In fact, all of the exact index number results derived in sections H.3 and H.4 can
be derived using transformations of the quadratic identity along with Shephard’s lemma
(or Wold’s identity, (3.98) above).128  Fortunately, for most empirical applications,
assuming that the consumer has (transformed) quadratic preferences will be an adequate
assumption so the results presented in section H.3-H.5 are quite useful to index number
practitioners who are willing to adopt the economic approach to index number theory.129

Essentially, the economic approach to index number theory provides a strong justification
for the use of the Fisher price index PF defined by (3.12), the Törnqvist-Theil price index
PT defined by (3.66), the implicit quadratic mean of order r price indices Pr* defined by
(3.113) (when r = 1, this index is the Walsh price index defined by (3.19) above) and the
quadratic mean of order r price indices Pr defined by (3.116).  In the next section, we ask
if it matters which one of these formula is chosen as “best”.

H.6  The approximation properties of superlative indices

                                                
127 This result is due to Diewert (1976; 122).
128 See Diewert (2000b).  Wold’s identity says that derivatives of the utility function are proportional to
prices.
129 However, if consumer preferences are nonhomothetic and the change in utility is substantial between the
two situations being compared, then we may want to compute separately the Laspeyres-Konüs and
Paasche-Konüs true cost of living indices defined above by (3.82) and (3.83), C(u0,p1)/C(u0,p0) and
C(u1,p1)/C(u1,p0) respectively.  In order to do this, we would have to use econometrics and estimate
empirically the consumer’s cost or expenditure function.  However, if we are willing to make the
assumption that the consumer’s cost function can be adequately represented by a general translog cost
function, then we can use (3.134) to calculate the true index C(u*,p1)/C(u*,p0) where u* ≡ [u0u1]1/2.
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154.     The results of sections H.3-H.5 provide us with a large number of index number
formulae which appear to be equally good from the viewpoint of the economic approach
to index number theory.  Two questions arise as a consequence of these results:

• Does it matter which of these formulae is chosen?
• If it does matter, which formula should be chosen?

155.     With respect to the first question, Diewert (1978; 888) showed that all of the
superlative index number formulae listed above in sections H.3-H.5 approximate each
other to the second order around any point where the two price vectors, p0 and p1,are
equal and where the two quantity vectors, q0 and q1, are equal.  In particular, this means
that we have the following equalities for all r and s not equal to 0 provided that p0 = p1

and q0 = q1:130

(3.135)  PT(p0,p1,q0,q1)                = Pr(p0,p1,q0,q1)                 = Ps*(p0,p1,q0,q1);
(3.136)  ∂PT(p0,p1,q0,q1)/∂pi

t        = ∂Pr(p0,p1,q0,q1)/∂pi
t        = ∂Ps*(p0,p1,q0,q1)/∂pi

t ;
                                                                                                                  i = 1,…,n; t = 0,1;
(3.137)  ∂PT(p0,p1,q0,q1)/∂qi

t        = ∂Pr(p0,p1,q0,q1)/∂qi
t        = ∂Ps*(p0,p1,q0,q1)/∂qi

t ;
                                                                                                                  i = 1,…,n; t = 0,1;
(3.138)  ∂2PT(p0,p1,q0,q1)/∂pi

t∂pk
t = ∂2Pr(p0,p1,q0,q1)/∂pi

t∂pk
t = ∂2Ps*(p0,p1,q0,q1)/∂pi

t∂pk
t ;

                                                                                                               i,k = 1,…,n; t = 0,1;
(3.139)  ∂2PT(p0,p1,q0,q1)/∂pi

t∂qk
t = ∂2Pr(p0,p1,q0,q1)/∂pi

t∂qk
t = ∂2Ps*(p0,p1,q0,q1)/∂pi

t∂qk
t ;

                                                                                                               i,k = 1,…,n; t = 0,1;
(3.140)  ∂2PT(p0,p1,q0,q1)/∂qi

t∂qk
t = ∂2Pr(p0,p1,q0,q1)/∂qi

t∂qk
t = ∂2Ps*(p0,p1,q0,q1)/∂qi

t∂qk
t ;

                                                                                                               i,k = 1,…,n; t = 0,1;

where the Törnqvist-Theil price index PT is defined by (3.66), the implicit quadratic mean
of order r price indices Ps* are defined by (3.113) and the quadratic mean of order r price
indices Pr are defined by (3.116).  Using the above results, Diewert (1978; 884)
concluded that “all superlative indices closely approximate each other”.

156.     However, the above conclusion is not true even though the equations (3.135)-
(3.140) are true.  The problem is that the quadratic mean of order r price indices Pr and
the implicit quadratic mean of order s price indices Ps* are (continuous) functions of the
parameters r and s respectively.  Hence as r and s become very large in magnitude, the
indices Pr and Ps* can differ substantially from say P2 = PF, the Fisher ideal index .  In
fact, using definition (3.116) and the limiting properties of means of order r131, Robert
Hill (2000;7) showed that Pr has the following limit as r approaches plus or minus
infinity:

                                                
130 To prove the equalities in (3.136)-(3.140), simply differentiate the various index number formulae and
evaluate the derivatives at p0 = p1 and q0 = q1.  Actually, equations (3.135)-(3.140) are still true provided
that p1 = λp0 and q 1 = µq0 for any numbers λ > 0 and µ > 0; i.e., provided that the period 1 price vector is
proportional to the period 0 price vector and that the period 1 quantity vector is proportional to the period 0
quantity vector.
131 See Hardy, Littlewood and Polya (1934).
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(3.141)  limr→+∞ Pr(p0,p1,q0,q1) = limr→−∞ Pr(p0,p1,q0,q1) = [mini{pi
1/pi

0}maxi{pi
1/pi

0}]1/2 .

Using Hill’s method of analysis, it can be shown that the implicit quadratic mean of order
r price index has the following limit as r approaches plus or minus infinity:

(3.142)  limr→+∞ Pr*(p0,p1,q0,q1) = limr→−∞ Pr*(p0,p1,q0,q1)
                                                    = ∑i=1

n pi
1qi

1/ ∑i=1
n pi

0qi
0 [mini{qi

1/qi
0}maxi{qi

1/qi
0}]1/2 .

Thus for r large in magnitude, Pr and Pr* can differ substantially from PT, P1, P1* = PW

(the Walsh price index) and P2 = P2* = PF (the Fisher ideal index).132

157.     Although Robert Hill’s theoretical and empirical results demonstrate conclusively
that all superlative indices will not necessarily closely approximate each other, there is
still the question of how well the more commonly used superlative indices will
approximate each other.  All of the commonly used superlative indices, Pr and Pr*, fall
into the interval 0 ≤ r ≤ 2.133  Robert Hill (2000; 16) summarized how far apart the
Törnqvist and Fisher indices were making all possible bilateral comparisons between any
two data points for his time series data set as follows:

“The superlative spread S(0,2) is also of interest since, in practice, Törnqvist (r = 0)and Fisher (r = 2) are by
far the two most widely used superlative indexes.  In all 153 bilateral comparisons, S(0,2) is less than the
Paasche-Laspeyres spread and on average, the superlative spread is only 0.1 percent.  It is because
attention, until now, has focussed almost exclusively on superlative indexes in the range 0 ≤ r ≤ 2 that a
general misperception has persisted in the index number literature that all superlative indexes approximate
each other closely.”

Thus for Hill’s time series data set covering 64 components of U.S. GDP from 1977 to
1994 and making all possible bilateral comparisons between any two years, the Fisher
and Törnqvist price indices differed by only 0.1 percent on average.  This close
correspondence is consistent with the results of other empirical studies using annual time
series data.134  Additional evidence on this topic may be found in Appendix 3.3 below.

158.     We have found that several index number formulae seem “best” when viewed
from various perspectives.  Thus we found that the Fisher ideal index PF = P2 = P2*
defined by (3.12) seemed to be best from the axiomatic viewpoint, the Törnqvist-Theil
price index PT defined by (3.66) seemed to be best from the stochastic viewpoint, and the
Walsh index PW defined by (3.19) (which is equal to the  implicit quadratic mean of order
r price indices Pr* defined by (3.113) when r = 1) seemed to be best from the viewpoint
of the “pure” price index.  The results presented in this section indicate that for “normal”
time series data, these 3 indices will give virtually the same answer.  To determine
precisely which one of these three alternative indices to use as a theoretical target or

                                                
132 Robert Hill (2000) documents this for two data sets.  His time series data consists of annual expenditure
and quantity data for 64 components of U.S. GDP from 1977 to 1994.  For this data set, Hill (2000; 16)
found that “superlative indexes can differ by more than a factor of two (i.e., by more than 100 percent),
even though Fisher and Törnqvist never differ by more than 0.6 percent.”
133 Diewert (1980; 451) showed that the Törnqvist index PT is a limiting case of Pr as r tends to 0.
134 See for example Diewert (1978; 894) or Fisher (1922), which is reproduced in Diewert (1976; 135).
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actual index, the statistical agency will have to decide which approach to bilateral index
number theory is most consistent with its goals.

H.7  Superlative indices and two stage aggregation

159.     Most statistical agencies use the Laspeyres formula to aggregate prices in two
stages. At the first stage of aggregation, the Laspeyres formula is used to aggregate
components of the overall index (e.g., food, clothing, services, etc.) and then at the
second stage of aggregation, these component subindices are further combined into the
overall index. The following question then naturally arises: does the index computed in
two stages coincide with the index computed in a single stage?  We address this question
initially in the context of the Laspeyres formula.135

160.     We now suppose that the price and quantity data for period t, pt and qt, can be
written in terms of M subvectors as follows:

(3.143)  pt  = (pt1, pt2, … ,ptM)  ;   qt = (qt1, qt2, … ,qtM)   ;   t = 0,1

where the dimensionality of the subvectors  ptm and qtm is Nm for m = 1,2,…,M with the
sum of the dimensions Nm equal to n.  These subvectors correspond to the price and
quantity data for subcomponents of the consumer price index for period t. We construct
subindices for each of these components going from period 0 to 1.  For the base period,
we set the price for each of these subcomponents, say Pm

0 for m = 1,2,…M, equal to 1
and we set the corresponding base period subcomponent quantities, say Qm

0 for m =
1,2,…,M, equal to the base period value of consumption for that subcomponent for m =
1,2,…,M; i.e., we have:

(3.144)  Pm
0 ≡ 1  ;  Qm

0 ≡ ∑i=1
Nm pi

0m qi
0m       for m = 1,2,…,M.

Now we use the Laspeyres formula in order to construct a period 1 price for each
subcomponent, say Pm

1 for m = 1,2,…,M, of the consumer price index. Since the
dimensionality of the subcomponent vectors, ptm and qtm , differ from the dimensionality
of the complete period t vectors of prices and quantities, pt and q t , we shall use different
symbols for these subcomponent Laspeyres indices, say PL

m for m = 1,2,…M. Thus the
period 1 subcomponent prices are defined as follows:

(3.145)  Pm
1 ≡ PL

m(p0m,p1m,q0m,q1m) ≡ ∑i=1
Nm pi

1m qi
0m / ∑i=1

Nm pi
0m qi

0m  for m = 1,2,…M.

Once the period 1 prices for the M subindices have been defined by (3.145), then
corresponding subcomponent period 1 quantities Qm

1 for m = 1,2,…,M can be defined by
deflating the period 1 subcomponent values ∑i=1

Nm pi
1m qi

1m by the prices Pm
1 defined by

(3.145); i.e., we have:

                                                
135 Much of the initial material in this section is adapted from Diewert (1978) and Alterman, Diewert and
Feenstra (1999).  See also Balk (1996b) for a discussion of alternative definitions for the two stage
aggregation concept and references to the literature on this topic.
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(3.146)  Qm
1 ≡ ∑i=1

Nm pi
1m qi

1m / Pm
1         for m = 1,2,…,M.

We can now define subcomponent price and quantity vectors for each period t = 0,1 using
equations (3.144) to (3.146) above.  Thus we define the period 0 and 1 subcomponent
price vectors P0 and P1 as follows:

(3.147)  P0 = (P1
0, P2

0,…,PM
0) ≡ 1M  ;  P1 = (P1

1, P2
1,…,PM

1)

where 1M denotes a vector of ones of dimension M and the components of P1 are defined
by (3.145). The period 0 and 1 subcomponent quantity vectors Q0 and Q1 are defined as
follows:

(3.148)  Q0 = (Q1
0, Q2

0,…,QM
0)  ;  Q1 = (Q1

1, Q2
1,…,QM

1)

where the components of Q0 are defined in (3.144) and the components of Q1 are defined
by (3.146). The price and quantity vectors in (3.147) and (3.148) represent the results of
the first stage aggregation. We can now use these vectors as inputs into the second stage
aggregation problem; i.e., we can now apply the Laspeyres price index formula using the
information in (3.147) and (3.148) as inputs into the index number formula. Since the
price and quantity vectors that are inputs into this second stage aggregation problem have
dimension M instead of the single stage formula which utilized vectors of dimension n,
we need a different symbol for our new Laspeyres index which we choose to be PL*.
Thus the Laspeyres price index computed in two stages can be denoted as
PL*(P0,P1,Q0,Q1).  We ask whether this two stage Laspeyres index equals the
corresponding single stage index PL that we have studied in the previous sections of this
chapter; i.e., we ask whether

(3.149)  PL*(P0,P1,Q0,Q1) = PL(p0,p1,q0,q1).

If the Laspeyres formula is used at each stage of each aggregation, the answer to the
above question is yes: straightforward calculations show that the Laspeyres index
calculated in two stages equals the Laspeyres index calculated in one stage.

161.     Now suppose we use the Fisher or Törnqvist formula at each stage of the
aggregation; i.e., in equations (3.145), suppose we replace the Laspeyres formula
PL

m(p0m,p1m,q0m,q1m) by the Fisher formula PF
m(p0m,p1m,q0m,q1m)  (or by the Törnqvist

formula PT
m(p0m,p1m,q0m,q1m)) and in equation (3.149), we replace PL*(P0,P1,Q0,Q1) by

PF* (or by PT*) and replace PL(p0,p1,q0,q1) by PF (or by PT).  Then do we obtain
counterparts to the two stage aggregation result for the Laspeyres formula, (3.149)?  The
answer is no; it can be shown that, in general,

(3.150) PF*(P0,P1,Q0,Q1) ≠ PF(p0,p1,q0,q1) and PT*(P0,P1,Q0,Q1) ≠ PT(p0,p1,q0,q1).

Similarly, it can be shown that the quadratic mean of order r index number formula Pr

defined by (3.116) and the implicit quadratic mean of order r index number formula Pr*
defined by (3.113) are also not consistent in aggregation.
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162.     However, even though the Fisher and Törnqvist formulae are not exactly
consistent in aggregation, it can be shown that these formulae are approximately
consistent in aggregation.  More specifically, it can be shown that the two stage Fisher
formula PF* and the single stage Fisher formula PF in (3.150), both regarded as functions
of the 4n variables in the vectors p0,p1,q0,q1, approximate each other to the second order
around a point where the two price vectors are equal (so that p0 = p1) and where the two
quantity vectors are equal (so that q0 = q1) and a similar result holds for the two stage and
single stage Törnqvist indices in (3.150).136 As we saw in the previous section, the single
stage Fisher and Törnqvist indices have a similar approximation property so all four
indices in (3.150) approximate each other to the second order around an equal (or
proportional) price and quantity point. Thus for normal time series data, single stage and
two stage Fisher and Törnqvist indices will usually be numerically very close.137  We
illustrate this result in Appendix 3.3 for an artificial data set.

163.     Similar approximate consistency in aggregation results (to the results for the
Fisher and Törnqvist formulae explained in the previous paragraph) can be derived for
the quadratic mean of order r indices, P r, and for the implicit quadratic mean of order r
indices, Pr*; see Diewert (1978; 889).  However, the results of Hill (2000) again imply
that the second order approximation property of the single stage quadratic mean of order
r index Pr to its two stage counterpart will break down as r approaches either plus or
minus infinity.  To see this, consider a simple example where there are only four
commodities in total.  Let the first price ratio p1

1/p1
0 be equal to the positive number a, let

the second two price ratios pi
1/pi

0 equal b and let the last price ratio p4
1/p4

1 equal c where
we assume a < c and a ≤ b ≤ c.  Using Hill’s result (3.141), the limiting value of the
single stage index is:

(3.151)  limr→+∞ Pr(p0,p1,q0,q1) = limr→−∞ Pr(p0,p1,q0,q1)
                                                  = [mini{pi

1/pi
0}maxi{pi

1/pi
0}]1/2

                                                  = [ac]1/2.

Now let us aggregate commodities 1 and 2 into a subaggregate and commodities 3 and 4
into another subaggregate.  Using Hill’s result (3.141) again, we find that the limiting
price index for the first subaggregate is [ab]1/2 and the limiting price index for the second
subaggregate is [bc]1/2.  Now apply the second stage of aggregation and use Hill’s result
once again to conclude that the limiting value of the two stage aggregation using Pr as our
index number formula is [ab2c]1/4.  Thus the limiting value as r tends to plus or minus
infinity of the single stage aggregate over the two stage aggregate is [ac]1/2/[ab2c]1/4 =
[ac/b2]1/4.  Now b can take on any value between a and c and so the ratio of the single
stage limiting Pr to its two stage counterpart can take on any value between [c/a]1/4 and

                                                
136 See Diewert (1978; 889).  In other words, a string of equalities similar to (3.135)-(3.140) hold between
the two stage indices and their single stage counterparts.  In fact, these equalities are still true provided that
p1 = λp0 and q1 = µq0 for any numbers λ > 0 and µ > 0.
137 For an empirical comparison of the four indices, see Diewert (1978; 894-895). For the Canadian
consumer data considered there, the chained two stage Fisher in 1971 was 2.3228 and the corresponding
chained two stage Törnqvist was 2.3230, the same values as for the corresponding single stage indices.
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[a/c]1/4.  Since c/a is less than 1 and a/c is greater than 1, it can be seen that the ratio of
the single stage to the two stage index can be arbitrarily far from 1 as r becomes large in
magnitude with an appropriate choice of the numbers a, b and c.

164.     The results in the previous paragraph show that we must be cautious in assuming
that all superlative indices will be approximately consistent in aggregation.  However, for
the three most commonly used superlative indices (the Fisher ideal PF, the Törnqvist-
Theil PT and the Walsh PW), the available empirical evidence indicates that these indices
satisfy the consistency in aggregation property to a sufficiently high enough degree of
approximation that users will not be unduly troubled by any inconsistencies.138

H.8  The Lloyd-Moulton index number formula.

165.     The final index number formula that we wish to discuss in this section on the
single household economic approach to index number theory is a potentially very useful
one for statistical agencies that are faced with the problem of producing a CPI in a timely
manner.  The index number formula that we will discuss makes use of the same
information that is required in order to implement  a Laspeyres index except one
additional piece of information is required.

166.     In this section, we make the same assumptions on the consumer that we made in
section H.2 above.  In particular, we assume that the consumer’s utility function f(q) is
linearly homogeneous139 and the corresponding unit cost function is c(p).  We suppose
that the unit cost function has the following functional form:

(3.152)  c(p) ≡ α0 [Σi=1
n αi pi

1−σ ]1/(1−σ)   if σ ≠ 1  or
          ln c(p) ≡ α0 + Σi=1

n αi ln pi           if σ = 1

where the αi and σ are nonnegative parameters with ∑i=1
n αi = 1.  The unit cost function

defined by (3.152) corresponds to a Constant Elasticity of Substitution  (CES) aggregator
function which was introduced into the economics literature by Arrow, Chenery, Minhas
and Solow (1961)140.  The parameter σ  is the elasticity of substitution ; when σ = 0, the
unit cost function defined by (3.152) becomes linear in prices and hence corresponds to a
fixed coefficients aggregator function which exhibits 0 substitutability between all
commodities. When σ = 1,the corresponding aggregator function is a Cobb-Douglas
function. When σ approaches +∞, the corresponding aggregator function f approaches a
linear aggregator function which exhibits infinite substitutability between each pair of
inputs.  The CES unit cost function defined by (3.152) is not a fully flexible functional
form (unless the number of commodities n being aggregated is 2) but it is considerably
more flexible than the zero substitutability aggregator function that is exact for the
Laspeyres and Paasche price indices.

                                                
138 See Appendix 3.3 for some additional evidence on this topic.
139 Thus we are assuming homothetic preferences in this section.
140 In the mathematics literature, this aggregator function is known as a mean of order r; see Hardy,
Littlewood and Polyá  (1934; 12-13).
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167.     Under the assumption of cost minimizing behavior in period 0, Shephard’s
Lemma, (3.94) above, tells us that the observed first period consumption of commodity i,
qi

0, will be equal to u0 ∂c(p0)/∂pi where ∂c(p0)/∂pi is the first order partial derivative of the
unit cost function with respect to the ith commodity price evaluated at the period 0 prices
and u0 = f(q0) is the aggregate  (unobservable) level of period 0 utility.  Using the CES
functional form defined by (3.152) and assuming that σ ≠ 1, we obtain the following
equations:

(3.153)  qi
0 = u0 α0 [Σk=1

n αk (pk
0)r ](1/r) −1 αi (pi

0)r −1 ;     r ≡ 1 − σ ≠ 0  ;   i = 1,2,…,n
                   = u0c(p0) αi (pi

0)r −1 / [Σk=1
n αk (pk

0)r ]          using (3.152).

Equations (3.153) can be rewritten as

(3.154)  pi
0qi

0/ u0c(p0) = αi (pi
0)r / Σk=1

n αk (pk
0)r  ;       i = 1,2,…,n

where r ≡ 1 − σ.  Now consider the following Lloyd (1975) Moulton (1996) index number
formula:

(3.155)  PLM(p0,p1,q0,q1) ≡ [Σi=1
n si

0 (pi
1/pi

0)1− σ ]1/(1− σ)   ;     σ ≠ 1

where si
0 is the period 0 expenditure share of commodity i as usual; i.e., we have

(3.156)  si
0 ≡ pi

0qi
0/ ∑k=1

n pk
0qk

0 ;         i = 1,2,…,n
                  = pi

0qi
0/ u0 c(p0)                  using the assumption of cost minimizing behavior

                  = αi (pi
0)r / Σk=1

n αk (pk
0)r    using (3.154).

If we substitute (3.156) into (3.155), we find that:

(3.157)  PLM(p0,p1,q0,q1) = [Σi=1
n si

0 (pi
1/pi

0)r ]1/r

                                        = [Σi=1
n {αi (pi

0)r / Σk=1
n αk (pk

0)r} (pi
1/pi

0)r ]1/r

                                        = [Σi=1
n αi (pi

1)r / Σk=1
n αk (pk

0)r ]1/r

                                        = α0 [Σi=1
n αi (pi

1)r ]1/r / α0 [Σk=1
n αk (pk

0)r ]1/r

                                        = c(p1)/c(p0)    using r ≡ 1 − σ and definition (3.152).

168.     Equation (3.157) shows that the Lloyd Moulton index number formula PLM is
exact for CES  preferences.  Lloyd (1975) and Moulton (1996) independently derived this
result but it was Moulton who appreciated the significance of the formula (3.155).  Note
that in order to evaluate (3.155) numerically, we require information on:

• base period expenditure shares si
0 ;

• the price relatives pi
1/pi

0 between the base period and the current period and
• an estimate of the elasticity of substitution between the commodities in the aggregate,

σ.
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The first two pieces of information are the standard information sets that statistical
agencies use to evaluate the Laspeyres price index PL (note that PLM  reduces to PL if σ =
0).  Hence, if the statistical agency is able to estimate the elasticity of substitution σ based
on past experience141, then the Lloyd Moulton price index can be evaluated using
essentially the same information set that is used in order to evaluate the traditional
Laspeyres index. Moreover, the resulting consumer price index will be free of
substitution bias to a reasonable degree of approximation.142  Of course, the practical
problem with implementing this methodology is that estimates of the elasticity of
substitution parameter σ are bound to be somewhat uncertain and hence the resulting
Lloyd Moulton index may be subject to charges that it is not objective or reproducible.
The statistical agency will have to balance the benefits of reducing substitution bias with
these possible costs.

I.  Economic approaches:  The case of many households

I.1  Plutocratic cost of living indices and observable bounds

169.     Up to this point, we have implicitly assumed a representative consumer model.  In
this section143, we consider some of the problems involved in the construction of a
superlative index when there are many households or regions in the economy and our
goal is the production of a national index.  In our algebra below, we allow for an arbitrary
number of households, H say, so in principle, each household in the economy under
consideration could have its own consumer price index.  However, in practice, it will be
necessary to group households into various classes and within each class, it will be
necessary to assume that the group of households in the class behaves as if it were a
single household in order to apply the economic approach to index number theory.  Our
partition of  the economy into H household classes can also be given a regional
interpretation: each household class can be interpreted as a group of households within a
region of the country under consideration.

170.     In this subsection, we will consider an economic approach to the CPI that is based
on the plutocratic cost of living index that was originally defined by Prais (1959).  This
concept was further refined by Pollak (1980; 276) (1981; 328) who defined his Scitovsky-
Laspeyres cost of living index as the ratio of total expenditure required to enable each

                                                
141 For the first application of this methodology (in the context of the consumer price index), see Shapiro
and Wilcox (1997; 121-123). They calculated superlative Törnqvist indices for the U.S. for the years 1986-
1995 and then calculated the Lloyd Moulton CES index for the same period using various values of σ.
They then chose the value of σ (which was .7) which caused the CES index to most closely approximate
the Törnqvist index.  Essentially the same methodology was used by Alterman, Diewert and Feenstra
(1999) in their study of U.S. import and export price indices.  For alternative methods for estimating σ, see
Balk (2000b).
142 What is a “reasonable” degree of approximation depends on the context.  Assuming that consumers have
C.E.S. preferences is not a reasonable assumption in the context of estimating elasticities of demand: we
require at least a second order approximation  to the consumer’s preferences in this context.  However, in
the context of approximating changes in a consumer’s expenditures on the n commodities under
consideration, it is usually adequate to assume a C.E.S. approximation.
143 Much of the material in this section is based on Diewert (1983a) (2000a) (2001).
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household in the economy under consideration to attain its base period indifference
surface at period 1 prices to that required at period 0 prices.  In the following paragraph,
we will make various assumptions and explain this concept more fully.

171.     Suppose that there are H households (or regions) in the economy and suppose
further that there are n commodities in the economy in periods 0 and 1 that households
consume and that we wish to include in our definition of the cost of living.  Denote an n
dimensional vector of commodity consumption in a given period by q ≡ (q1,q2,…, qn) as
usual.  Denote the vector of period t market prices faced by household h by ph

t ≡
(ph1

t,ph2
t,…,phN

t) for t = 0,1.  Note that we are not assuming that each household faces the
same vector of commodity prices.  In addition to the market commodities that are in the
vector q, we assume that each household is affected by an M dimensional vector of
environmental144 or demographic145 variables or public goods, e ≡ (e1,e2,…,eM).  We
suppose that there are H households (or regions) in the economy during periods 0 and 1
and the preferences of household h over different combinations of market commodities q
and environmental variables e can be represented by the continuous utility function
fh(q,e) for h = 1,2,…,H.146  For periods t = 0,1 and for households h = 1,2,…,H, it is
assumed that the observed household h consumption vector qh

t ≡ (qh1
t,…,qhN

t) is a
solution to the following household h expenditure minimization problem:

(3.158)  min q { ph
t•q : fh(q,eh

t) ≥ uh
t }  ≡ Ch(uh

t,eh
t, ph

t)  ;  t = 0,1;  h = 1,2,…H

where eh
t is the environmental vector facing household h in period t, uh

t ≡ fh(qh
t,eh

t) is the
utility level achieved by household h during period t and Ch is the cost or expenditure
function that is dual to the utility function fh.147  Basically, these assumptions mean that
each household has stable preferences over the same list of commodities during the two
periods under consideration, the same households appear in each period and each
household chooses its consumption bundle in the most cost efficient way during each
period, conditional on the environmental vector that it faces during each period.  Note
again that the household (or regional) prices are in general different across households (or
regions).

172.     With the above assumptions in mind, we generalize Pollak (1980) (1981) and
Diewert (1983a; 190)148 and define the class of conditional plutocratic cost of living
indices, P*(p0,p1,u,e1,e2,…,eH), pertaining to periods 0 and 1 for the arbitrary utility

                                                
144 This is the terminology used by Pollak (1989; 181) in his model of the conditional cost of living
concept.
145 Caves, Christensen and Diewert (1982; 1409) used the terms demographic variables or public goods to
describe the vector of conditioning variables e in their generalized model of the Konüs price index or cost
of living index.
146 We assume that each fh(q,e) is continuous and increasing in the components of q and e and is concave in
the components of q.
147 In order to minimize notational clutter, in this section we use the notation  p•q ≡ ∑n=1

N pnqn as the inner
product between the vectors p and q, rather than write out the summations.
148 These authors provided generalizations of the plutocratic cost of living index due to Prais (1959).  Pollak
and Diewert did not include the environmental variables in their definitions of a group cost of living index.
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vector of household utilities u ≡ (u1,u2,…,uH) and for the arbitrary vectors of household
environmental variables eh for h = 1,2,…,H as follows:

(3.159)  P*(p1
0,…,pH

0,p1
1,…,pH

1,u,e1,e2,…,eH) ≡ ∑h=1
H Ch(uh,eh,ph

1) / ∑h=1
H Ch(uh,eh,ph

0) .

The numerator on the right hand side of (3.159) is the sum over households of the
minimum cost, Ch(uh,eh,ph

1), for household h to achieve the arbitrary utility level uh,
given that the household h faces the arbitrary vector of household h environmental
variables eh and also faces the period 1 vector of prices ph

1. The denominator on the right
hand side of (3.159) is the sum over households of the minimum cost, Ch(uh,eh,ph

0), for
household h to achieve the same arbitrary utility level uh, given that the household faces
the same arbitrary vector of household h environmental variables eh and also faces the
period 0 vector of prices ph

0.  Thus in the numerator and denominator of (3.159), only the
price variables are different, which is precisely what we want in a theoretical definition of
a consumer price index.

173.     We now specialize the general definition (3.159) by replacing the general utility
vector u by either the period 0 vector of household utilities u0 ≡ (u1

0,u2
0,…uH

0) or the
period 1 vector of household utilities u1 ≡ (u1

1,u2
1,…uH

1). We also specialize the general
definition (3.159) by replacing the general household environmental vectors (e1,e2,…eH)
≡ e by either the period 0 vector of household environmental variables e0 ≡ (e1

0,e2
0,…eH

0)
or the period 1 vector of household environmental variables  e1 ≡ (e1

1,e2
1,…,eH

1).  The
choice of the base period vector of utility levels and base period environmental variables
leads to the Laspeyres conditional plutocratic cost of living index,
P*(p1

0,…,pH
0,p1

1,…,pH
1,u0,e0)149, while the choice of the period 1 vector of utility levels

and period 1 environmental variables leads to the Paasche conditional plutocratic cost of
living index, P*(p1

0,…,pH
0,p1

1,…,pH
1,u1,e1).  It turns out that these last two indices satisfy

some interesting inequalities, which we derive below.

174.     Using definition (3.159), the Laspeyres plutocratic conditional cost of living
index, P*(p1

0,…,pH
0,p1

1,…,pH
1,u0,e0), may be written as follows:

(3.160)  P*(p1
0,…,pH

0,p1
1,…,pH

1,u0,e1
0,e2

0,…,eH
0)

                        ≡ ∑h=1
H Ch(uh

0,eh
0,ph

1) / ∑h=1
H Ch(uh

0,eh
0,ph

0)
                        = ∑h=1

H Ch(uh
0,eh

0,ph
1) / ∑h=1

H ph
0•qh

0     using (3.158) for t = 0
                        ≤ ∑h=1

H  ph
1•qh

0 / ∑h=1
H ph

0•qh
0

                                since Ch(uh
0,eh

0,ph
1) ≡ min q { ph

1•q : fh(q,eh
0) ≥ uh

0 } ≤ p1•qh
0 and qh

0

                                is feasible for the cost minimization problem for h = 1,2,…,H
                        ≡ PPL

                                                
149 This is the concept of a cost of living index that Triplett (2000; 27) found most useful for measuring
inflation: “One might want to produce a COL conditional on the base period’s weather experience….  In
this case, the unusually cold winter does not affect the conditional COL subindex that holds the
environment constant. … the COL subindex that holds the environment constant is probably the COL
concept that is most useful for an anti-inflation policy.”  Hill (1999; 4) endorsed this point of view.
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where PPL is defined to be the observable (in principle)  plutocratic Laspeyres price
index, ∑h=1

H  ph
1•qh

0 / ∑h=1
H ph

0•qh
0, which uses the individual vectors of household or

regional quantities for period 0, (q1
0,…,qH

0), as quantity weights.150  If prices are equal
across households (or regions), so that

(3.161)  ph
t = pt   for t = 0,1 and h = 1,2,…,H,

then the plutocratic (or disaggregated) Laspeyres price index PPL collapses down to the
usual aggregate Laspeyres index, PL; i.e., if (3.161) holds, then PPL in (3.160) becomes

(3.162)  PPL ≡ ∑h=1
H  ph

1•qh
0 / ∑h=1

H ph
0•qh

0

                    = p1• ∑h=1
H qh

0 / p0• ∑h=1
H qh

0

                    = p1•q0 / p0•q0

                    ≡ PL

where the total quantity vector in period t is defined as

(3.163)  qt ≡∑h=1
H qh

t      for t = 0,1.

The inequality (3.160) says that the theoretical Laspeyres plutocratic conditional cost of
living index, P*(p1

0,…,pH
0,p1

1,…,pH
1,u0,e0), is bounded from above by the observable (in

principle)  plutocratic or disaggregated Laspeyres price index PPL.  The special case of
inequality (3.160) when the equal prices assumption (3.161) holds was first obtained by
Pollak (1989; 182) for the case of one household with environmental variables and by
Pollak (1980; 276) for the many household case but where the environmental variables
are absent from the household utility and cost functions.

175.     In a similar manner, specializing definition (3.159), the Paasche conditional
plutocratic cost of living index, P*(p1

0,…,pH
0,p1

1,…,pH
1,u1,e1), may be written as follows:

(3.164)  P*(p1
0,…,pH

0,p1
1,…,pH

1,u1,e1
1,e2

1,…,eH
1)

                        ≡ ∑h=1
H Ch(uh

1,eh
1,ph

1) / ∑h=1
H Ch(uh

1,eh
1,ph

0)
                        = ∑h=1

H ph
1•qh

1 /∑h=1
H Ch(uh

1,eh
1,ph

0)      using (3.158) for t = 1
                        ≥  ∑h=1

H  ph
1•qh

1 / ∑h=1
H ph

0•qh
1              using a feasibility argument

                        ≡ PPP

where PPP is defined to be the plutocratic or disaggregated (over households) Paasche
price index, ∑h=1

H  ph
1•qh

1 / ∑h=1
H ph

0•qh
1, which uses the individual vectors of household

quantities for period 1, (q1
1,…,qH

1), as quantity weights.

176.     If prices are equal across households (or regions), so that assumptions (3.161)
hold, then the disaggregated Paasche price index PPP collapses down to the usual
aggregate Paasche index, PP; i.e., if (3.161) holds, then PPP in (3.164) becomes

                                                
150 Thus the plutocratic Laspeyres index can be regarded as an ordinary Laspeyres index except that each
commodity in each region is regarded as a separate commodity.
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(3.165)  PPP ≡ ∑h=1
H  ph

1•qh
1 / ∑h=1

H ph
0•qh

1

                    = p1• ∑h=1
H qh

1 / p0• ∑h=1
H qh

1

                    = p1•q1 / p0•q1

                    ≡ PP.

177.     Returning to the inequality (3.164), we see that the theoretical Paasche
conditional plutocratic cost of living index, P*(p1

0,…,pH
0,p1

1,…,pH
1,u1,e1), is bounded

from below by the observable plutocratic or disaggregated Paasche price index PPP.
Diewert (1983a; 191) first obtained the inequality (3.164) for the case where the
environmental variables are absent from the household utility and cost functions and
prices are equal across households.

178.     In the following subsection, we shall show how to obtain a theoretical plutocratic
cost of living index that is bounded from above and below rather than the theoretical
indices that just have the one sided bounds in (3.160) and (3.164).

I.2  The Fisher plutocratic price index

179.     Using the inequalities (3.160) and (3.164) and the continuity properties of the
conditional plutocratic cost of living P*(p1

0,…,pH
0,p1

1,…,pH
1,u,e) defined by (3.159), it is

possible to modify the method of proof used by Konüs (1924) and Diewert (1983a; 191)
and establish the following result:151

Under our assumptions, there exists a reference utility vector u* ≡ (u1
*,u2

*,…,uH
*) such

that the household h reference utility level uh
* lies between the household h period 0 and

1 utility levels, uh
0 and uh

1 respectively for h = 1,…,H, and there exist household
environmental vectors eh

* ≡ (eh1
*,eh2

*,…,ehM
*) such that the household h reference mth

environmental variable ehm
* lies between the household h period 0 and 1 levels for the

mth environmental variable, ehm
0 and ehm

1 respectively for m = 1,2,…,M and h = 1,…,H,
and the conditional plutocratic cost of living index P*(p1

0,…,pH
0,p1

1,…,pH
1,u*,e*)

evaluated at this intermediate reference utility vector u* and the intermediate reference
vector of household environmental variables e* ≡ (e1

*,e2
*,…,eH

*)  lies between the
observable (in principle) plutocratic Laspeyres and Paasche price indices, PPL and PPP,
defined above by the last equalities in (3.160) and (3.164).

180.     The above result tells us that the theoretical national plutocratic conditional
consumer price index P*(p1

0,…,pH
0,p1

1,…,pH
1,u*,e*) lies between the plutocratic or

disaggregated Laspeyres index PPL and the plutocratic or disaggregated Paasche index
PPP.  Hence if PPL and PPP are not too different, a good point approximation to the
theoretical national plutocratic consumer price index will be the plutocratic or
disaggregated Fisher index PPF defined as:

                                                
151 Note that the household cost functions must be continuous in the environmental variables which is a real
restriction on the types of environmental variables which can be accommodated by the result.
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(3.166)  PPF ≡ [PPL PPP]1/2 .

The plutocratic Fisher price index PPF is computed just like the usual Fisher price index,
except that each commodity in each region (or for each household) is regarded as a
separate commodity. Of course, this index will satisfy the time reversal test.

181.     Since statistical agencies do not calculate Laspeyres, Paasche and Fisher price
indices by taking inner products of price and quantity vectors as we have done in (3.166),
it will be useful to obtain formulae for the Laspeyres and Paasche indices that depend
only on price relatives and expenditure shares.  In order to do this, we need to introduce
some notation.  Define the expenditure share of household h on commodity i in period t
as

(3.167)  shi
t ≡ phi

t qhi
t / ∑k=1

n phk
t qhk

t ;                  t = 0,1 ;  h = 1,2,…,H ;  i = 1,2,…,n.

Define the expenditure share of household h in total period t consumption as:

(3.168)  Sh
t ≡ ∑i=1

n phi
t qhi

t /  ∑k=1
H ∑i=1

n pik
t qik

t

                   = ph
t•qh

t / ∑k=1
H pk

t•qk
t                                    t = 0,1 ;  h = 1,2,…,H.

Finally, define the national expenditure share of commodity i in period t as:

(3.169)  σi
t ≡ ∑h=1

H phi
t qhi

t / ∑k=1
H pk

t•qk
t                                    t = 0,1 ;  i = 1,2,…,n

                   = ∑h=1
H [phi

t qhi
t / ph

t•qh
t][ ph

t•qh
t / ∑k=1

H pk
t•qk

t]
                   = ∑h=1

H shi
t  ph

t•qh
t / ∑k=1

H pk
t•qk

t                               using definitions (3.167)
                   = ∑h=1

H shi
t Sh

t                                                             using definitions (3.168).

The Laspeyres price index for region h (or household h) is defined as:

(3.170)  PLh ≡ ph
1•qh

0 /  ph
0•qh

0                                         h = 1,2,…,H
                   = ∑i=1

n (phi
1/ phi

0) phi
0 qhi

0 / ph
0•qh

0

                   = ∑i=1
n  shi

0(phi
1/ phi

0)                                   using definitions (3.167).

182.     Referring back to (3.160), the plutocratic national Laspeyres price index PPL can
be rewritten as follows:

(3.171) PPL ≡ ∑h=1
H  ph

1•qh
0 / ∑h=1

H ph
0•qh

0

                   = ∑h=1
H  [ph

1•qh
0 / ph

0•qh
0][ ph

0•qh
0 / ∑h=1

H ph
0•qh

0]
                   = ∑h=1

H  [ph
1•qh

0 / ph
0•qh

0] Sh
0                    using definitions (3.168) with t = 0

(3.172)       = ∑h=1
H Sh

0 PLh                                             using definitions (3.170)
                   = ∑h=1

H Sh
0 ∑i=1

n  shi
0(phi

1/ phi
0)                   using the last line of (3.170)

(3.173)       = ∑h=1
H ∑i=1

n Sh
0 shi

0(phi
1/ phi

0)                     rearranging terms.

Equation (3.172) shows that the plutocratic national Laspeyres price index is equal to a
(period 0) regional expenditure share weighted average of the regional Laspeyres price
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indices.  Equation (3.173) shows that the national Laspeyres price index is equal to a
period 0 expenditure share weighted average of the regional price relatives, (phi

1/ phi
0),

where the corresponding weight, Sh
0shi

0, is the period 0 national expenditure share of
commodity i in region h.

183.     The Paasche price index for region h (or household h) is defined as:

(3.174)  PPh ≡ ph
1•qh

1 /  ph
0•qh

1                                                  h = 1,2,…,H
                    = 1 / ∑i=1

n (phi
0/ phi

1) phi
1 qhi

1 / ph
1•qh

1

                    = 1 / ∑i=1
n  shi

1(phi
1/ phi

0)−1                                   using definitions (3.167)
                    = [∑i=1

n  shi
1(phi

1/ phi
0)−1]−1 .

184.     Referring back to (3.165), the plutocratic national Paasche price index PPP can be
rewritten as follows:

(3.175) PPP ≡ ∑k=1
H  pk

1•qk
1 / ∑h=1

H ph
0•qh

1

                   = 1 / {∑h=1
H  [ph

0•qh
1 / ph

1•qh
1][ ph

1•qh
1 / ∑k=1

H pk
1•qk

1]}
                   = 1 / ∑h=1

H  [ph
1•qh

0 / ph
0•qh

0]−1 Sh
1            using definitions (3.168) with t = 1

(3.176)       = [∑h=1
H Sh

1 PPh
−1]−1

                                     using definitions (3.174)
                   = [∑h=1

H Sh
1 ∑i=1

n  shi
1(phi

1/ phi
0)−1]−1           using the last line of (3.174)

(3.177)       = [∑h=1
H ∑i=1

n Sh
1 shi

1(phi
1/ phi

0)−1]−1             rearranging terms.

Equation (3.176) shows that the national plutocratic Paasche price index is equal to a
(period 1) regional expenditure share weighted harmonic mean of the regional Paasche
price indices.  Equation (3.177) shows that the national Paasche price index is equal to a
period 1 expenditure share weighted harmonic average of the regional price relatives,
(phi

1/ phi
0), where the weight for this price relative, Sh

1shi
1, is the period 1 national

expenditure share of commodity i in region h.

185.     Of course, the share formulae for the plutocratic Paasche and Laspeyres indices,
PPP and PPL, given by (3.177) and (3.173) can now be used to calculate the plutocratic
Fisher index, PPF ≡ [PPP PPL]1/2.

186.     If prices are equal across regions, the formulae (3.173) and (3.177) simplify.  The
formula for the plutocratic Laspeyres index (3.173) becomes:

(3.178) PPL = ∑h=1
H ∑i=1

n Sh
0 shi

0(phi
1/ phi

0)
                   = ∑h=1

H ∑i=1
n Sh

0 shi
0(pi

1/ pi
0)                    using assumptions (3.161)

                   = ∑i=1
n σi

0 (pi
1/ pi

0)                                   using (3.169) for t = 0
                   = PL

where PL is the usual aggregate Laspeyres price index based on the assumption that each
household faces the same vector of commodity prices; see (3.162) for the definition of
PL.  Under the equal prices across households assumption (3.161), the formula for the
plutocratic Paasche index (3.177) becomes:
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(3.179) PPP = [∑h=1
H ∑i=1

n Sh
1 shi

1(phi
1/ phi

0)−1]−1

                   = [∑h=1
H ∑i=1

n Sh
1 shi

1(pi
1/ pi

0)−1]−1         using assumptions (3.161)
                   = [∑i=1

n σi
1 (pi

1/ pi
0)−1]−1                        using (3.169) for t = 1

                   = PP

where PP is the usual aggregate Paasche price index based on the assumption that each
household faces the same vector of commodity prices; see (3.165) for the definition of PP.

187.     Thus with the assumption that commodity prices are the same across regions, in
order to calculate national Laspeyres and Paasche indices, we require only “national”
price relatives and national commodity expenditure shares for the two periods under
consideration.  However, if there is regional variation in prices, then the simplified
formulae (3.178) and (3.179) are not valid and we must use our earlier formulae, (3.173)
and (3.177).

I.3  Democratic versus plutocratic cost of living indices

188.     The plutocratic indices considered above weight each household in the economy
according to the size of their expenditures in the two periods under consideration.
Instead of weighting in this way, it is possible to define theoretical indices (and
“practical” approximations to them) that give each household or household group in the
economy an equal weight.  Following Prais (1959), we will call such an index a
democratic index.  In this subsection, we will rework the plutocratic index number theory
developed in subsections I.1 and I.2 above into a democratic framework.

189.     Making the same assumptions as in section I.1 above, we define the class of
conditional democratic cost of living indices, PD*(p0,p1,u,e1,e2,…,eH), pertaining to
periods 0 and 1 for the arbitrary utility vector of household utilities u ≡ (u1,u2,…,uH) and
for the arbitrary vectors of household environmental variables eh for h = 1,2,…,H as
follows:

(3.180)  PD*(p1
0,…,pH

0,p1
1,…,pH

1,u,e1,e2,…,eH) ≡ ∑h=1
H [1/H]Ch(uh,eh,ph

1)/Ch(uh,eh,ph
0).

Thus PD* is a simple unweighted arithmetic average of the individual household
conditional cost of living indices, Ch(uh,eh,ph

1)/Ch(uh,eh,ph
0). In the numerator and

denominator of these conditional indices, only the price variables are different, which is
precisely what we want in a theoretical definition of a consumer price index.  If the
vector of environmental variables, eh, is not present in the cost function of household h,
then the conditional index Ch(uh,eh,ph

1)/Ch(uh,eh,ph
0) becomes an ordinary Konüs true cost

of living index of the type defined earlier by (3.81).

190.     We now specialize the general definition (3.180) by replacing the general utility
vector u by either the period 0 vector of household utilities u0 ≡ (u1

0,u2
0,…uH

0) or the
period 1 vector of household utilities u1 ≡ (u1

1,u2
1,…uH

1). We also specialize the general
definition (3.180) by replacing the general household environmental vectors (e1,e2,…eH)
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≡ e by either the period 0 vector of household environmental variables e0 ≡ (e1
0,e2

0,…eH
0)

or the period 1 vector of household environmental variables  e1 ≡ (e1
1,e2

1,…,eH
1).  The

choice of the base period vector of utility levels and base period environmental variables
leads to the Laspeyres conditional democratic cost of living index,
PD*(p1

0,…,pH
0,p1

1,…,pH
1,u0,e0), while the choice of the period 1 vector of utility levels

and period 1 environmental variables leads to the Paasche conditional democratic cost of
living index, PD*(p1

0,…,pH
0,p1

1,…,pH
1,u1,e1).  It turns out that these two democratic

indices satisfy some interesting inequalities, which we derive below.

191.     Specializing definition (3.180), the Laspeyres democratic conditional cost of
living index, PD*(p1

0,…,pH
0,p1

1,…,pH
1,u0,e0), may be written as follows:

(3.181)  PD*(p1
0,…,pH

0,p1
1,…,pH

1,u0,e1
0,e2

0,…,eH
0)

                        ≡ ∑h=1
H [1/H] Ch(uh

0,eh
0,ph

1) / Ch(uh
0,eh

0,ph
0)

                        = ∑h=1
H [1/H] Ch(uh

0,eh
0,ph

1) / ph
0•qh

0     using (3.158) for t = 0
                        ≤ ∑h=1

H  [1/H] ph
1•qh

0 / ph
0•qh

0

                                since Ch(uh
0,eh

0,ph
1) ≡ min q { ph

1•q : fh(q,eh
0) ≥ uh

0 } ≤ p1•qh
0 and qh

0

                                is feasible for the cost minimization problem for h = 1,2,…,H
                        ≡ PDL

where PDL is defined to be the observable (in principle)  democratic Laspeyres price
index, ∑h=1

H  [1/H] ph
1•qh

0 /  ph
0•qh

0, which uses the individual vectors of household or
regional quantities for period 0, (q1

0,…,qH
0), as quantity weights.

192.     In a similar manner, specializing definition (3.180), the Paasche conditional
democratic cost of living index, PD*(p1

0,…,pH
0,p1

1,…,pH
1,u1,e1), may be written as

follows:

(3.182)  PD*(p1
0,…,pH

0,p1
1,…,pH

1,u1,e1
1,e2

1,…,eH
1)

                        ≡ ∑h=1
H [1/H] Ch(uh

1,eh
1,ph

1) / Ch(uh
1,eh

1,ph
0)

                        = ∑h=1
H [1/H] ph

1•qh
1 / Ch(uh

1,eh
1,ph

0)      using (3.158) for t = 1
                        ≥  ∑h=1

H  [1/H] ph
1•qh

1 / ph
0•qh

1               using a feasibility argument
                        ≡ PDP

where PDP is defined to be the democratic Paasche price index, ∑h=1
H [1/H] ph

1•qh
1 /

ph
0•qh

1, which uses the individual vector of household h quantities for period 1, qh
1, as

quantity weights for term h in the summation of individual household Paasche indices.
Thus, we see that the theoretical Paasche conditional democratic cost of living index,
PD*(p1

0,…,pH
0,p1

1,…,pH
1,u1,e1), is bounded from below by the observable (in principle)

democratic Paasche price index PDP.  Diewert (1983a; 191) first obtained the inequality
(3.182) for the case where the environmental variables are absent from the household
utility and cost functions and prices are equal across households.

193.     We now show how to obtain a theoretical democratic cost of living index that is
bounded from above and below by observable indices.  Using the inequalities (3.181) and
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(3.182) and the continuity properties of the conditional democratic cost of living
P*(p1

0,…,pH
0,p1

1,…,pH
1,u,e) defined by (3.180), it is possible to modify the method of

proof used by Konüs (1924) and Diewert (1983a; 191) and establish the following result:

Under our assumptions, there exists a reference utility vector u* ≡ (u1
*,u2

*,…,uH
*) such

that the household h reference utility level uh
* lies between the household h period 0 and

1 utility levels, uh
0 and uh

1 respectively for h = 1,…,H, and there exist household
environmental vectors eh

* ≡ (eh1
*,eh2

*,…,ehM
*) such that the household h reference mth

environmental variable ehm
* lies between the household h period 0 and 1 levels for the

mth environmental variable, ehm
0 and ehm

1 respectively for m = 1,2,…,M and h = 1,…,H,
and the conditional democratic cost of living index PD*(p1

0,…,pH
0,p1

1,…,pH
1,u*,e*)

evaluated at this intermediate reference utility vector u* and the intermediate reference
vector of household environmental variables e* ≡ (e1

*,e2
*,…,eH

*)  lies between the
observable (in principle) democratic Laspeyres and Paasche price indices, PDL and PDP,
defined above by the last equalities in (3.181) and (3.182).

194.     The above result tells us that the theoretical national democratic conditional
consumer price index PD*(p1

0,…,pH
0,p1

1,…,pH
1,u*,e*) lies between the democratic

Laspeyres index PDL and the democratic Paasche index PDP.  Hence if PDL and PDP are not
too different, a good point approximation to the theoretical national democratic consumer
price index will be the democratic Fisher index PDF defined as:

(3.183)  PDF ≡ [PDL PDP]1/2 .

The democratic Fisher price index PDF will satisfy the time reversal test.

195.     Again, it will be useful to obtain formulae for the democratic Laspeyres and
Paasche indices that depend only on price relatives and expenditure shares.  Using
definition (3.167) for the household h expenditure share on commodity i during period t,
shi

t, the Laspeyres and Paasche price indices for household h can be written in share form
as follows:

(3.184)  PLh ≡ ph
1•qh

0 /  ph
0•qh

0 = ∑i=1
n shi

0 (phi
1/phi

0) ;                    h = 1,…,H ;

(3.185)  PPh ≡ ph
1•qh

1 /  ph
0•qh

1 = [∑i=1
n shi

1 (phi
1/phi

0)−1]−1 ;            h = 1,…,H .

Substituting (3.184) into the definition of the democratic Laspeyres index, PDL, leads to
the following share type formula:152

(3.186)  PDL = ∑h=1
H [1/H] ∑i=1

n shi
0 (phi

1/phi
0).

                                                
152 Comparing the formula for the democratic Laspeyres index, PDL, with the previous formula (3.173) for
the plutocratic Laspeyres index, PPL, we see that the plutocratic weight for the ith price relative for
household h is Sh

0shi
0 whereas the corresponding democratic weight is (1/H)shi

0.  Thus households that have
larger base period expenditures and hence bigger expenditure shares Sh

0 get a larger weight in the
plutocratic index as compared to the democratic index.
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Similarly, substituting (3.185) into the definition of the democratic Paasche index, PDP,
leads to the following share type formula:

(3.187)  PDP = ∑h=1
H [1/H] [∑i=1

n shi
1 (phi

1/phi
0)−1]−1.

196.     The formula for the democratic Laspeyres index in the previous paragraph
simplifies if we can assume that each household faces the same vector of prices in each of
the two periods under consideration.  Under this condition, we may rewrite (3.186) as

(3.188)  PDL = ∑i=1
n sdi

0 (pi
1/pi

0)

where the period 0 democratic expenditure share for commodity i, sdi
0, is defined as

follows:

(3.189)  sdi
0 ≡ ∑h=1

H [1/H] shi
0 ;                                     i = 1,…,n.

Thus sdi
0 is simply the arithmetic average (over all households) of the individual

household expenditure shares on commodity i during period 0.  The formula for the
democratic Paasche index does not simplify in the same way, under the assumption that
households face the same prices in each period, due to the harmonic form of averaging in
(3.185).

197.     Our conclusion at this point is that democratic and plutocratic Laspeyres, Paasche
and Fisher indices can be constructed by a statistical agency provided that information on
household specific price relatives phi

1/phi
0 and expenditures is available for both periods

under consideration.  If expenditure information is available only for the base period,
then only the Laspeyres democratic and plutocratic indices can be constructed.

198.     It is now necessary to discuss a practical problem that faces statistical agencies:
namely, that existing household consumer expenditure surveys, which are used in order
to form estimates of household expenditure shares, are not very accurate.  Thus the
detailed commodity by region expenditure shares, Sh

0shn
0 and Sh

1shn
1, which appear in the

formulae for the plutocratic Laspeyres and Paasche indices are generally measured with
very large errors.  Similarly, the individual household expenditure shares for the two
periods under consideration, shn

0 and shn
1, which are required in order to calculate the

democratic Laspeyres and Paasche indices defined by (3.186) and (3.187) respectively,
are also generally measured with substantial errors.  Hence, it may lead to less overall
error if the regional commodity expenditure shares shn

t are replaced by the national
commodity expenditure shares σn

t defined by (3.169).  Whether this approximation is
justified would depend on a detailed analysis of the situation facing the statistical agency.
In general, complete and accurate information on household expenditure shares will not
be available to the statistical agency and hence statistical estimation and smoothing
techniques will have to be used in order to obtain expenditure weights that will be used to
weight the price relatives collected by the agency.
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199.     This completes our introduction to the economic approach to index number
theory.  Other aspects of the economic approach will be covered in subsequent
chapters.153

Appendix 3.1  The relationship between the Paasche and Laspeyres indices

1.     Recall the notation used in section B.2 above.  Define the ith relative price or price
relative ri and the ith quantity relative ti as follows:

(A3.1.1)  ri ≡ pi
1/pi

0 ;  ti ≡ qi
1/qi

0  ;  i = 1,…,n.

Using formula (3.8) above for the Laspeyres price index PL and definitions (A3.1.1), we
have:

(A3.1.2)  PL = ∑i=1
n ri si

0 ≡ r* ;

i.e., we define the “average” price relative r* as the base period expenditure share
weighted average of the individual price relatives, ri .

2.     Using formula (3.6) for the Paasche price index PP, we have:

(A3.1.3)  PP ≡ ∑i=1
n pi

1qi
1 / ∑m=1

n pm
0qm

1

                    = ∑i=1
n ri

 ti pi
0qi

0 / ∑m=1
n tm pm

0qm
0     using definitions (A3.1.1)

                    = ∑i=1
n ri

 ti si
0 / ∑m=1

n tm sm
0

                                                             dividing numerator and denominator by ∑i=1
n pi

0qi
0

                    = {[1/∑m=1
n tm sm

0][ ∑i=1
n (ri − r*)( ti − t*) si

0]} + r*

using (A3.1.2) and ∑i=1
n si

0 = 1 and where the “average” quantity relative t* is defined as

(A3.1.4)  t* ≡ ∑i=1
n ti si

0

                    = QL

where the last equality follows using (3.11), the definition of the Laspeyres quantity
index QL.

3.     Taking the difference between PP and PL and using (A3.1.2)-(A3.1.4) yields:

(A3.1.5)  PP − PL =  [1/QL][ ∑i=1
n (ri − r*)( ti − t*) si

0].

Now let r and t be discrete random variables that take on the n values ri and ti

respectively.  Let si
0 be the joint probability that r = ri and t = ti for i = 1,…,n and let the

joint probability be 0 if r = ri and t = tj where i ≠ j.  It can be verified that the summation
∑i=1

n (r i − r*)( ti − t*) si
0 on the right hand side of (A3.1.5) is the covariance between the

                                                
153 For criticisms and limitations of the economic approach, see Turvey (2000) and Diewert (2001).  For a
vigorous defense of the economic approach, see Triplett (2000).
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price relatives ri and the corresponding quantity relatives ti.  This covariance can be
converted into a correlation coefficient.154  If this covariance is negative, which is the
usual case in the consumer context, then PP will be less than PL.

Appendix 3.2  The relationship between the Divisia and economic approaches

1.     Divisia’s approach to index number theory relied on the theory of differentiation.
Thus it does not appear to have any connection with economic theory.  However, starting
with Ville (1946), a number of economists155 have established that the Divisia price and
quantity indices do have a connection with the economic approach to index number
theory.  We outline this connection.

2.     We first outline the economic approach to the determination of the price level and
the quantity level.  The particular economic approach that we use in this appendix is due
to Shephard (1953) (1970) and Samuelson and Swamy (1974).  This homothetic
preferences approach was explained in section H.2 of the main text for this chapter.

3.     As in section H.1, we assume that “the” consumer has well defined preferences over
different combinations of the n consumer commodities or items.  Each combination of
items can be represented by a positive vector q ≡ [q1,…,qn].  The consumer’s preferences
over alternative possible consumption vectors q are assumed to be representable by a
continuous, nondecreasing and concave utility function f.  We further assume that the
consumer minimizes the cost of achieving the period t utility level ut ≡ f(qt) for periods t
= 0,1,…,T.  Thus we assume that the observed period t consumption vector qt solves the
following period t cost minimization problem:

(A3.2.1)  C(ut,pt) ≡ min q {∑i=1
n pi

tqi :  f(q) = ut = f(qt) }  = ∑i=1
n pi

tqi
t ;    t = 0,1,…,T.

The period t price vector for the n commodities under consideration that the consumer
faces is pt.  Note that the solution to the period t cost or expenditure minimization
problem defines the consumer’s cost function, C(ut,pt).

4.     As in section H.2, we place an additional regularity condition on the consumer’s
utility function f.  We assume that f is (positively) linearly homogeneous for strictly
positive quantity vectors. Under this assumption, the consumer’s expenditure or cost
function, C(u,p), decomposes into uc(p) where c(p) is the consumer’s unit cost function;
see equation (3.85) in section H.2 above.  Under these assumptions, we obtain the
following counterparts to equations (3.86) in section H.2:

(A3.2.2)  ∑i=1
n pi

tqi
t = c(pt)f(qt)                                                       for t = 0,1,…,T.

                                                
154 See Bortkiewicz (1923; 374-375) for the first application of this correlation coefficient decomposition
technique.
155 See for example Malmquist (1953; 227), Wold (1953; 134-147), Solow (1957), Jorgenson and Griliches
(1967) and Hulten (1973).  See Balk (2000a) for a recent survey of work on Divisia price and quantity
indices.
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Thus the period t total expenditure on the n commodities in the aggregate, ∑i=1
n pi

tqi
t,

decomposes into the product of two terms, c(pt)f(qt).  We can identify the period t unit
cost, c(pt), as the period t price level Pt and the period t level of utility, f(qt), as the period
t quantity level Qt.

5.     We now relate the economic price level for period t, Pt ≡ c(pt), that was defined in
the previous paragraph to the Divisia price level for time t, P(t), that was implicitly
defined by the differential equation (3.29). As in section D.1 above, we now think of the
prices as being continuous, differentiable functions of time, pi(t) say, for i = 1,…,n.  Thus
the unit cost function can be regarded as a function of time t as well; i.e., we define the
unit cost function as a function of t as

(A3.2.3)  c*(t) ≡ c[p1(t),p2(t),…,pn(t)].

Assuming that the first order partial derivatives of the unit cost function c exist, we can
calculate the logarithmic derivative of c*(t) as follows:

(A3.2.4)  dln c*(t)/dt ≡ [1/c*(t)] dc*(t)/dt
                                  = [1/c*(t)] ∑i=1

n ci[p1(t),p2(t),…,pn(t)] pi′(t)            using (A3.2.3)

where ci[p1(t),p2(t),…,pN(t)] ≡ ∂c[p1(t),p2(t),…,pn(t)]/∂pi is the partial derivative of the
unit cost function with respect to the ith price, pi, and pi′(t) ≡ dpi(t)/dt is the time
derivative of the ith price function, pi(t).  Using Shephard’s (1953; 11) lemma, the
consumer’s cost minimizing demand for commodity i at time t is:

(A3.2.5)  qi(t) = u(t) ci[p1(t),p2(t),…,pn(t)]    for i = 1,…,n

where the utility level at time t is u(t) = f[q1(t),q2(t),…,qn(t)].  The continuous time
counterpart to equations (A3.2.2) above is that total expenditure at time t is equal to total
cost at time t which in turn is equal to the utility level, u(t), times the period t unit cost,
c*(t); i.e., we have:

(A3.2.6)  ∑i=1
n pi(t)qi(t) = u(t)c*(t) = u(t) c[p1(t),p2(t),…,pn(t)].

Now the logarithmic derivative of the Divisia price level P(t) can be written as (recall
(3.29) above):

(A3.2.7)  P′(t)/P(t) = ∑i=1
n pi′(t)qi(t) / ∑i=1

n pi(t)qi(t)
                              = ∑i=1

n pi′(t)qi(t) / u(t) c*(t)                                         using (A3.2.6)
                              = ∑i=1

n pi′(t){u(t) ci[p1(t),p2(t),…,pn(t)] }/ u(t) c*(t)   using (A3.2.5)
                              = ∑i=1

n ci[p1(t),p2(t),…,pn(t)] pi′(t) /c*(t)                     rearranging terms
                              = [1/c*(t)] dc*(t)/dt                                                     using (A3.2.4)
                              ≡ c*′(t)/c*(t).
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Thus under the above continuous time cost minimizing assumptions, the Divisia price
level, P(t), is essentially equal to the unit cost function evaluated at the time t prices, c*(t)
≡ c[p1(t),p2(t),…,pN(t)].

6.     If the Divisia price level P(t) is set equal to the unit cost function c*(t) ≡
c[p1(t),p2(t),…,pN(t)], then from (A3.2.2), it follows that the Divisia quantity level Q(t)
defined by (3.30) will equal the consumer’s utility function regarded as a function of
time, f*(t) ≡ f[q1(t),…,qn(t)].  Thus under the assumption that the consumer is
continuously minimizing the cost of achieving a given utility level where the utility or
preference function is linearly homogeneous, we have shown that the Divisia price and
quantity levels P(t) and Q(t), defined implicitly by the differential equations (3.29) and
(3.30), are essentially equal to the consumer’s unit cost function c*(t) and utility function
f*(t) respectively.156  These are rather remarkable equalities since in principle, given the
functions of time, pi(t) and qi(t), we can solve the differential equations numerically and
hence P(t) and Q(t) are in principle observable (up to some normalizing constants).

7.     For more on the Divisia approach to index number theory, see Vogt (1977)(1978)
and Balk (2000a).  An alternative approach to Divisia indices using line integrals may be
found in the companion volume on the Producer Price Index; see Eurostat, ILO, IMF,
OECD, UNECE and the World Bank (2000).

Appendix 3.3  Price Indices using an Artificial Data Set

1.     In order to give the reader some idea of how much the various index numbers
defined in this chapter might differ using a “real” data set, we compute all of the major
indices defined in the chapter using an artificial data set consisting of prices and
quantities for 6 commodities over 5 periods.  The period can be thought of as somewhere
between a year and 5 years.  The trends in the data are generally more pronounced than
one would see in the course of a year.  The price and quantity data are listed in Tables
3.3.1 and 3.3.2 below.  For convenience, we have also listed the period t nominal
expenditures, pt•qt ≡ ∑i=1

n pi
tqi

t, along with the corresponding period t expenditure shares,
si

t ≡ pi
tqi

t/ pt•qt, in Table 3.3.3.

Table 3.3.1  Prices for Six Commodities

Period t      p1
t        p2

t       p3
t        p4

t       p5
t        p6

t

       1          1.0       1.0       1.0       1.0       1.0       1.0
       2          1.2       3.0       1.3       0.7       1.4       0.8
       3          1.0       1.0       1.5       0.5       1.7       0.6
       4          0.8       0.5       1.6       0.3       1.9       0.4
       5          1.0       1.0       1.6       0.1       2.0       0.2

Table 3.3.2  Quantities for Six Commodities

                                                
156 Obviously, the scale of the utility and cost functions are not uniquely determined by the differential
equations (3.29) and (3.30).
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Period t       q1
t         q2

t        q3
t        q4

t         q5
t        q6

t

      1            1.0        1.0        2.0        1.0        4.5        0.5
      2            0.8        0.9        1.9        1.3        4.7        0.6
      3            1.0        1.1        1.8        3.0        5.0        0.8
      4            1.2        1.2        1.9        6.0        5.6        1.3
      5            0.9        1.2        2.0      12.0        6.5        2.5

Table 3.3.3  Expenditures and Expenditure Shares for Six Commodities

Period t     pt qt        s1
t           s2

t           s3
t           s4

t            s5
t           s6

t

   1             10.00    0.1000    0.1000    0.2000    0.1000    0.4500    0.0500
   2             14.10    0.0681    0.1915    0.1752    0.0645    0.4667    0.0340
   3             15.28    0.0654    0.0720    0.1767    0.0982    0.5563    0.0314
   4             17.56    0.0547    0.0342    0.1731    0.1025    0.6059    0.0296
   5             20.00    0.0450    0.0600    0.1600    0.0600    0.6500    0.0250

2.     We will explain the trends that are built into the above tables.  Think of the first 4
commodities as the consumption of various classes of goods in some economy while the
last two commodities are the consumption of two classes of services.  Think of the first
good as agricultural consumption, which fluctuates around 1 and its price also fluctuates
around 1.  The quantity of the second good is energy consumption which trends up gently
during the five periods with some minor fluctuations.  However, note that the price of
energy fluctuates wildly from period to period.157  The third good is traditional
manufactures.  We have built in rather high inflation rates for this commodity for periods
2 and 3 which diminishes to a very low inflation rate by the end of our sample period.158

The consumption of traditional manufactured goods is more or less static in our data set.
The fourth commodity is high technology manufactured goods; e.g., computers, video
cameras, compact disks, etc.  We have the demand for these high tech commodities
growing twelve times over our sample period while the final period price is only one
tenth of the first period price.  The fifth commodity is traditional services.  The price
trends for this commodity are similar to traditional manufactures, except that the period
to period inflation rates are a bit higher.  However, we have the demand for traditional
services growing much more strongly than for traditional manufactures.  Our final
commodity is high technology services; e.g., telecommunications, wireless phones,
internet services, stock market trading, etc.  For this final commodity, we have the price
trending downward very strongly to end up at 20% of the starting level while demand
increases fivefold.  The movements of prices and quantities in this artificial data set are
more pronounced than the year to year movements that would be encountered in a typical
country but they do illustrate the problem that is facing compilers of the Consumer Price

                                                
157 This is an example of the price bouncing phenomenon noted by Szulc (1983).  Note that the fluctuations
in the price of energy that we have built into our data set are not that unrealistic: in the years 1998-2000,
the price of a barrel of crude oil has fluctuated in the range $10 to $37 U.S.
158 This corresponds roughly to the experience of most industrialized countries over the period starting in
1973 to the mid 1990’s.  Thus we are compressing roughly 5 years of price movement into one of our
periods.
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Index; namely, year to year price and quantity movements are far from being
proportional across commodities so the choice of index number formula will matter.

3.     Every price statistician is familiar with the Laspeyres index  PL defined by (3.5) in
the main text of chapter 3 and the Paasche index PP defined by (3.6) above.  We list these
indices in Table 3.3.4 along with the two unweighted indices that we considered: the
Carli index defined by (3.64) and the Jevons index defined by (3.42).  The indices in
Table 3.3.4 compare the prices in period t with the prices in period 1; i.e., they are fixed
base indices.  Thus the period t entry for the Carli index, PC, is simply the arithmetic
mean of the 6 price relatives, ∑i=1

6 (1/6)(pi
t/pi

1), while the period t entry for the Jevons
index, PJ, is the geometric mean of the 6 price relatives, ∏i=1

6 (pi
t/pi

1)1/6.

Table 3.3.4  The Fixed Base Laspeyres, Paasche, Carli and Jevons Indices

Period t      PL             PP             PC            PJ

   1           1.0000      1.0000      1.0000      1.0000
   2           1.4200      1.3823      1.4000      1.2419
   3           1.3450      1.2031      1.0500      0.9563
   4           1.3550      1.0209      0.9167      0.7256
   5           1.4400      0.7968      0.9833      0.6324

Note that by period 5, the spread between the fixed base Laspeyres and Paasche price
indices is enormous: PL is equal to 1.4400 while PP is 0.7968, a spread of about 81%.
Since both of these indices have exactly the same theoretical justification, it can be seen
that the choice of index number formula matters a lot.  The period 5 entry for the Carli
index, 0.98333, falls between the corresponding Paasche and Laspeyres indices but the
period 5 Jevons index, 0.63246, does not.  Note that the Jevons index is always
considerably below the corresponding Carli index.  This will always be the case (unless
prices are proportional in the two periods under consideration) because a geometric mean
is always equal to or less than the corresponding arithmetic mean.159

4.     It is of interest to recalculate the 4 indices listed in Table 3.3.4 above using the chain
principle rather than the fixed base principle (see section E of chapter 3).  Our
expectation is that the spread between the Paasche and Laspeyres indices will be reduced
by using the chain principle.  These chain indices are listed in Table 3.3.5.

Table 3.3.5  Chain Laspeyres, Paasche, Carli and Jevons Indices

Period t      PL             PP             PC            PJ

   1           1.0000      1.0000      1.0000      1.0000
   2           1.4200      1.3823      1.4000      1.2419
   3           1.3646      1.2740      1.1664      0.9563
   4           1.3351      1.2060      0.9236      0.7256
   5           1.3306      1.1234      0.9446      0.6325

                                                
159 This is the Theorem of the Arithmetic and Geometric Mean; see Hardy, Littlewood and Polyá (1934).
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It can be seen comparing Tables 3.3.4 and 3.3.5 that chaining eliminated about 2/3 of the
spread between the Paasche and Laspeyres indices.  However, even the chained Paasche
and Laspeyres indices differ by about 18% in period 5 so the choice of index number
formula still matters.  Note that chaining did not affect the Jevons index.  This is an
advantage of the index but the lack of weighting is a fatal flaw.160  We would expect the
“truth” to lie between the Paasche and Laspeyres indices and from Table 3.3.5, we see
that the unweighted Jevons index is far below this acceptable range.  Note that chaining
did not affect the Carli index in a systematic way for our particular data set: in periods 3
and 4, the chained Carli is above the corresponding fixed base Carli but in period 5, the
chained Carli is below the fixed base Carli.161

5.     We turn now to a systematic comparison of all of the asymmetrically weighted price
indices that were defined in Chapter 3 (with the exception of the Lloyd Moulton index
which we will consider later).  The fixed base indices are listed in Table 3.3.6.  The fixed
base Laspeyres and Paasche indices, PL and PP, are the same as those indices listed in
Table 3.3.4 above.  The Palgrave index, PPAL, is defined by equation (3.73) in the main
text of Chapter 3.  The indices denoted by PGL and PGP are the geometric Laspeyres and
geometric Paasche indices162 which are special cases of the fixed weight geometric
indices defined by Konüs and Byushgens; see (3.40) in Chapter 3.  For the geometric
Laspeyres index, PGL, we let the weights αi be the base period expenditure shares, si

1.
This index should be considered an alternative to the fixed base Laspeyres index since
each of these indices makes use of the same information set.  For the geometric Paasche
index, PGP, we let the weights αi be the current period expenditure shares, si

t.  Finally,
the index PHL is the harmonic Laspeyres index that was defined by (3.77) in Chapter 3.

Table 3.3.6  Asymmetrically Weighted Fixed Base Indices

Period t     PPAL        PL            PGP          PGL          PP            PHL

     1         1.0000     1.0000     1.0000     1.0000     1.0000     1.0000
     2         1.6096     1.4200     1.4846     1.3300     1.3824     1.2542
     3         1.4161     1.3450     1.3268     1.2523     1.2031     1.1346
     4         1.5317     1.3550     1.3282     1.1331     1.0209     0.8732
     5         1.6720     1.4400     1.4153     1.0999     0.7968     0.5556

                                                
160 The problem with the evenly weighted geometric mean is that the price declines in high technology
goods and services are given the same weighting as the price changes in the other 4 commodities (which
have rising or stationary price changes) but the expenditure shares of the high technology commodities
remain rather small throughout the 5 periods.  Thus weighted price indices do not show the rate of overall
price decrease that the unweighted Jevons index shows.  These somewhat negative comments on the use of
the unweighted geometric mean as an index number formula at higher levels of aggregation do not preclude
its use at the very lowest level of aggregation where a strong axiomatic justification for the use of this
formula can be given.  If probability sampling is used at the lowest level of aggregation, then the
unweighted geometric mean essentially becomes the logarithmic Laspeyres index.
161 For many data sets, we would expect the chained Carli to be above the corresponding fixed base Carli;
see Szulc (1983).
162 Vartia (1978; 272) uses the terms logarithmic Laspeyres and logarithmic Paasche  respectively.
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By looking at the period 5 entries in Table 3.3.6, it can be seen that the spread between
all of these fixed base asymmetrically weighted indices has increased to be even larger
than our earlier spread of 81% between the fixed base Paasche and Laspeyres indices.  In
Table 3.3.6, the period 5 Palgrave index is about 3 times as big as the period 5 harmonic
Laspeyres index, PHL!  Again, this illustrates the point that due to the nonproportional
growth of prices and quantities in most economies today, the choice of index number
formula is very important.

6.     It is possible to explain why certain of the indices in Table 3.3.6 are bigger than
others.  It can be shown that a weighted arithmetic mean of n numbers is equal to or
greater than the corresponding weighted geometric mean of the same n numbers which in
turn is equal to or greater than the corresponding weighted harmonic mean of the same n
numbers.163  It can be seen that the three indices PPAL, PGP and PP all use the current
period expenditure shares si

t to weight the price relatives (pi
t/pi

1) but PPAL is a weighted
arithmetic mean of these price relatives, PGP is a weighted geometric mean of these price
relatives and PP is a weighted harmonic mean of these price relatives.  Thus by
Schlömilch’s inequality, we must have:164

(3.3.1)  PPAL  ≥  PGP  ≥  PP .

Viewing Table 3.3.6, it can be seen that the inequalities (3.3.1) hold for each period. It
can also be verified that the three indices PL, PGL and PHL all use the base period
expenditure shares si

1 to weight the price relatives (pi
t/pi

1) but PL is a weighted arithmetic
mean of these price relatives, PGL is a weighted geometric mean of these price relatives
and PHL is a weighted harmonic mean of these price relatives.  Thus by Schlömilch’s
inequality, we must have:165

(3.3.2)  PL  ≥  PGL  ≥  PHL .

Viewing Table 3.3.6, it can be seen that the inequalities (3.3.2) hold for each period.

7.     We continue with our systematic comparison of all of the asymmetrically weighted
price indices that were defined in Chapter 3.  These indices using the chain principle are
listed in Table 3.3.7.

Table 3.3.7  Asymmetrically Weighted Indices Using the Chain Principle

Period t     PPAL        PL            PGP          PGL          PP            PHL

     1         1.0000     1.0000     1.0000     1.0000     1.0000     1.0000
     2         1.6096     1.4200     1.4846     1.3300     1.3824     1.2542
     3         1.6927     1.3646     1.4849     1.1578     1.2740     0.9444
     4         1.6993     1.3351     1.4531     1.0968     1.2060     0.8586
     5         1.7893     1.3306     1.4556     1.0266     1.1234     0.7299

                                                
163 This follows from Schlömilch’s (1858) inequality; see Hardy, Littlewood and Polyá (1934; chapter 11).
164 These inequalities were noted by Fisher (1922; 92) and Vartia (1978; 278).
165 These inequalities were also noted by Fisher (1922; 92) and Vartia (1978; 278).
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Viewing Table 3.3.7, it can be seen that although the use of the chain principle
dramatically reduced the spread between the Paasche and Laspeyres indices PP and PL

compared to the corresponding fixed base entries in Table 3.3.6, the spread between the
highest and lowest asymmetrically weighted indices in period 5 (the Palgrave index PPAL

and PHL) did not fall as much: the fixed base spread was 1.6720/0.5556 = 3.01 while the
corresponding chain spread was 1.7893/0.7299 = 2.45.  Thus in this particular case, the
use of the chain principle combined with the use of an index number formula that uses the
weights of only one of the two periods being compared did not lead to a significant
narrowing of the huge differences that these formulae generate using the fixed base
principle.  However, with respect to the Paasche and Laspeyres formulae, we find that
chaining does significantly reduce the spread between these two indices.

8.     Is there an explanation for the results reported in the previous paragraph?  It can be
shown that all 6 of the indices that are found in the inequalities (3.3.1) and (3.3.2)
approximate each other to the first order around an equal prices and quantities point.
Thus with smooth trends in the data, we would expect all of the chain indices to more
closely approximate each other than the fixed base indices because the changes in the
individual prices and quantities would be smaller using the chain principle.  This
expectation is realized in the case of the Paasche and Laspeyres indices but not with the
others.  However, for some of the commodities in our data set, the trends in the prices and
quantities are not smooth.  In particular, the prices for our first two commodities
(agricultural products and oil) bounce up and down.  As noted by Szulc (1983), this will
tend to cause the chain indices to have a wider dispersion than their fixed base
counterparts.  In order to determine if it is the bouncing prices problem that is causing
some of the chained indices in Table 3.3.7 to diverge from their fixed base counterparts,
we recomputed all of the indices in Tables 3.3.6 and 3.3.7 but excluding commodities 1
and 2 from the computations.  The results of excluding these bouncing commodities may
be found in Tables 3.3.8 and 3.3.9.

Table 3.3.8  Asymmetrically Weighted Fixed Base Indices for Commodities 3-6

Period t     PPAL        PL            PGP          PGL          PP            PHL

     1          1.0000    1.0000     1.0000     1.0000     1.0000     1.0000
     2          1.2877    1.2500     1.2621     1.2169     1.2282     1.1754
     3          1.4824    1.4313     1.3879     1.3248     1.2434     1.1741
     4          1.6143    1.5312     1.4204     1.3110     1.0811     0.9754
     5          1.7508    1.5500     1.4742     1.1264     0.7783     0.5000

Table 3.3.9  Asymmetrically Weighted Chained Indices for Commodities 3-6

Period t     PPAL        PL            PGP          PGL          PP            PHL

     1          1.0000    1.0000     1.0000     1.0000     1.0000     1.0000
     2          1.2877    1.2500     1.2621     1.2169     1.2282     1.1754
     3          1.4527    1.4188     1.4029     1.3634     1.3401     1.2953
     4          1.5036    1.4640     1.4249     1.3799     1.3276     1.2782
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     5          1.4729    1.3817     1.3477     1.2337     1.1794     1.0440

It can be seen that excluding the bouncing price commodities does cause the chain
indices to have a much narrower spread than their fixed base counterparts.  Thus our
conclusion is that if the underlying price and quantity data is subject to reasonably
smooth trends over time, then the use of chain indices will narrow considerably the
dispersion in the asymmetrically weighted indices.  We now turn our attention to index
number formulae that use weights from both periods in a symmetric or even handed
manner.

9.     Symmetrically weighted indices can be decomposed into two classes: superlative
indices and other symmetrically weighted indices.  Superlative indices have a close
connection to economic theory; i.e., as we saw in sections H.3 to H.5 of Chapter 3, a
superlative index is exact for a representation of the consumer’s preference function or
the dual unit cost function that can provide a second order approximation to arbitrary
(homothetic) preferences.  We considered 4 superlative indices in Chapter 4:

• the Fisher ideal price index PF defined by (3.12);
• the Walsh price index PW defined by (3.19) (this price index also corresponds to

the quantity index Q1 defined by (3.114) in Chapter 3);
• the Törnqvist-Theil price index PT defined by (3.43) or (3.66) and
• the implicit Walsh price index PIW that corresponds to the Walsh quantity index

QW defined by (3.53) (this is also the index P1 defined by (3.119) in Chapter 3).

These 4 symmetrically weighted superlative price indices are listed in Table 3.3.8 using
the fixed base principle.  We also list in this table two symmetrically weighted (but not
superlative) price indices:166

• the Marshall Edgeworth price index PME defined by (3.18) and
• the Drobisch price index PD defined above (3.12).

Table 3.3.10  Symmetrically Weighted Fixed Base Indices

Period t     PT            PIW          PW           PF           PD           PME

     1         1.0000     1.0000     1.0000     1.0000     1.0000     1.0000
     2         1.4052     1.4015     1.4017     1.4011     1.4012     1.4010
     3         1.2890     1.2854     1.2850     1.2721     1.2741     1.2656
     4         1.2268     1.2174     1.2193     1.1762     1.1880     1.1438
     5         1.2477     1.2206     1.1850     1.0712     1.1184     0.9801

Note that the Drobisch index PD is always equal to or greater than the corresponding
Fisher index PF.  This follows from the facts that the Fisher index is the geometric mean

                                                
166 Diewert (1978; 897) showed that the Drobisch Sidgwick Bowley price index approximates any
superlative index to the second order around an equal price and quantity point; i.e., PSB is a pseudo-
superlative index.  Straightforward computations show that the Marshall Edgeworth index PME is also
pseudo-superlative.
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of the Paasche and Laspeyres indices while the Drobisch index is the arithmetic mean of
the Paasche and Laspeyres indices and an arithmetic mean is always equal to or greater
than the corresponding geometric mean.  Comparing the fixed base asymmetrically
weighted indices, Table 3.3.6, with the symmetrically weighted indices, Table 3.3.10, it
can be seen that the spread between the lowest and highest index in period 5 is much less
for the symmetrically weighted indices.  The spread was 1.6720/0.5556 = 3.01 for the
asymmetrically weighted indices but only 1.2477/0.9801 = 1.27 for the symmetrically
weighted indices.  If we restrict ourselves to the superlative indices listed for period 5 in
Table 3.3.10, then this spread is further reduced to 1.2477/1.0712 = 1.16; i.e., the spread
between the fixed base superlative indices is “only” 16% compared to the fixed base
spread between the Paasche and Laspeyres indices of  81% (1.4400/0.7968 = 1.81).  We
expect to further reduce the spread between the superlative indices by using the chain
principle.

10.     We recompute the symmetrically weighted indices using the chain principle.  The
results may be found in Table 3.3.9.

Table 3.3.11  Symmetrically Weighted Indices Using the Chain Principle

Period t     PT            PIW          PW           PF           PD           PME

         1        1.0000     1.0000     1.0000     1.0000     1.0000     1.0000
      2        1.4052     1.4015     1.4017     1.4011     1.4012     1.4010
      3        1.3112     1.3203     1.3207     1.3185     1.3193     1.3165
      4        1.2624     1.2723     1.2731     1.2689     1.2706     1.2651
      5        1.2224     1.2333     1.2304     1.2226     1.2270     1.2155

A quick glance at Table 3.3.11 shows that the combined effect of using both the chain
principle as well as symmetrically weighted indices is to dramatically reduce the spread
between all indices constructed using these two principles.  The spread between all of the
symmetrically weighted indices in period 5 is only 1.2333/1.2155 = 1.015 or 1.5% and
the spread between the 4 superlative indices in period 5 is an even smaller 1.2333/1.2224
= 1.009 or about 0.1%.  The spread in period 5 between the two most commonly used
superlative indices, the Fisher PF and the Törnqvist PT, is truly tiny: 1.2226/1.2224 =
0.0002.167

10.     The results listed in Table 3.3.11 reinforce the numerical results tabled in Hill
(2000) and Diewert (1978; 894): the most commonly used chained superlative indices
will generally give approximately the same numerical results.168  In particular, the
chained Fisher, Törnqvist and Walsh indices will generally approximate each other very
closely.

                                                
167 However, in other periods the differences were larger.  On average over the last 4 periods, the chain
Fisher and the chain Törnqvist indices differed by 0.0025 percentage points.
168 More precisely, the superlative quadratic mean of order r price indices Pr defined by (3.116) and the
implicit quadratic mean of order r price indices Pr* defined by (3.113) will generally closely approximate
each other provided that r is in the interval 0 ≤ r ≤ 2.
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12.     We now turn our attention to the differences between superlative indices and their
counterparts that are constructed in two stages of aggregation; see section H.7 of Chapter
3 for a discussion of the issues and a listing of the formulae used.  In our artificial data
set, we will first aggregate the first 4 commodities into a goods aggregate and the last 2
commodities into a services aggregate.  In the second stage of aggregation, the goods and
services components will be aggregated into an all items index.

13.     We report the results in Table 3.3.12 for our two stage aggregation procedure using
period 1 as the fixed base for the Fisher index PF, the Törnqvist index PT and the Walsh
and implicit Walsh indexes, PW and PIW.

Table 3.3.12  Fixed Base Superlative Single Stage and Two Stage Indices

Period t     PF          PF2S        PT         PT2S       PW        PW2S       PIW      PIW2S

     1         1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000
     2         1.4011   1.4004   1.4052   1.4052   1.4017   1.4015   1.4015   1.4022
     3         1.2721   1.2789   1.2890   1.2872   1.2850   1.2868   1.2854   1.2862
     4         1.1762   1.2019   1.2268   1.2243   1.2193   1.2253   1.2174   1.2209
     5         1.0712   1.1286   1.2477   1.2441   1.1850   1.2075   1.2206   1.2240

Viewing Table 3.3.12, it can be seen that the fixed base single stage superlative indices
generally approximate their fixed base two stage counterparts fairly closely with the
exception of the Fisher formula.  The divergence between the single stage Fisher index PF

and its two stage counterpart PF2S in period 5 is 1.1286/1.0712 = 1.05 or 5%.  The other
divergences are 2% or less.

14.     Using chain indices, we report the results in Table 3.3.13 for our two stage
aggregation procedure.  Again, the single stage and their two stage counterparts are listed
for the Fisher index PF, the Törnqvist index PT and the Walsh and implicit Walsh indexes,
PW and PIW.

Table 3.3.13  Chained Superlative Single Stage and Two Stage Indices

Period t     PF          PF2S        PT         PT2S       PW        PW2S       PIW      PIW2S

     1         1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000
     2         1.4011   1.4004   1.4052   1.4052   1.4017   1.4015   1.4015   1.4022
     3         1.3185   1.3200   1.3112   1.3168   1.3207   1.3202   1.3203   1.3201
     4         1.2689   1.2716   1.2624   1.2683   1.2731   1.2728   1.2723   1.2720
     5         1.2226   1.2267   1.2224   1.2300   1.2304   1.2313   1.2333   1.2330

Viewing Table 3.3.13, it can be seen that the chained single stage superlative indices
generally approximate their fixed base two stage counterparts very closely indeed.  The
divergence between the chained single stage Törnqvist index PT and its two stage
counterpart PT2S in period 5 is 1.2300/1.2224 = 1.006 or 0.6%.  The other divergences are
all less than this.  Given the large dispersion in period to period price movements, these
two stage aggregation errors are not large.
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15.     The next formula that we illustrate using our artificial data set is the Lloyd Moulton
index PLM defined by (3.155) in Chapter 3.  Recall that this formula requires an estimate
for the parameter σ, the elasticity of substitution between all commodities being
aggregated.  Recall also that if  σ equals 0, then the Lloyd Moulton index collapses down
to the ordinary Laspeyres index, PL.  When σ equals 1, the Lloyd Moulton index is not
defined but it can be shown that the limit of PLMσ as σ approaches 1 is PGL, the geometric
Laspeyres index or the logarithmic Laspeyres index with base period shares as weights.
This index uses the same basic information as the fixed base Laspeyres index PL and so it
is a possible alternative index for CPI compilers to use. As was shown by Shapiro and
Wilcox (1997)169, the Lloyd Moulton index may be used to approximate a superlative
index using the same information that is used in the construction of a fixed base
Laspeyres index provided that we have an estimate for the parameter σ.  We will test this
methodology out using our artificial data set.  The superlative index that we choose to
approximate is the chain Fisher index170 (which approximates the other chained
superlative indices listed in Table 3.3.11 very closely).  The chained Fisher index PF is
listed in column 2 of Table 3.3.14 along with the fixed base Lloyd Moulton indices PLMσ

for σ equal to 0 (this reduces to the fixed base Laspeyres index PL), 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8 and 1 (which is the fixed base geometric index PGL).  Note that the Lloyd
Moulton indices steadily decrease as we increase the elasticity of substitution σ.171

Table 3.3.14  Chained Fisher and Fixed Base Lloyd Moulton Indices

Period     PF        PLM0    PLM.2    PLM.3     PLM.4    PLM.5    PLM.6    PLM.7    PLM.8     PLM1

     1      1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
     2      1.4011  1.4200  1.4005  1.3910  1.3818  1.3727  1.3638  1.3551  1.3466  1.3300
     3      1.3185  1.3450  1.3287  1.3201  1.3113  1.3021  1.2927  1.2831  1.2731  1.2523
     4      1.2689  1.3550  1.3172  1.2970  1.2759  1.2540  1.2312  1.2077  1.1835  1.1331
     5      1.2226  1.4400  1.3940  1.3678  1.3389  1.3073  1.2726  1.2346  1.1932  1.0999

Viewing Table 3.3.14, it can be seen that no single choice of the elasticity of substitution
σ will lead to a Lloyd Moulton price index PLMσ that will closely approximate the chained
Fisher index PF for periods 2,3,4 and 5.  To approximate PF in period 2, we should choose
σ close to 0.1; to approximate PF in period 3, we should choose σ close to 0.3; to
approximate PF in period 4, we should choose σ between 0.4 and 0.5 and to approximate
PF in period 5, we should choose σ between 0.7 and 0.8.172

                                                
169 Alterman, Diewert and Feenstra (1999) also used this methodology in the context of estimating
superlative international trade price indices.
170 Since there is still a considerable amount of dispersion among the fixed base superlative indices and
practically no dispersion between the chained superlative indices, we take the Fisher chain index as our
target rather than any of the fixed base superlative indices.
171 This follows from Schlömilch’s (1858) inequality again.
172 Unfortunately, for this data set, neither the fixed base Laspeyres index PL = PLM0 nor the fixed base
weighted geometric index PGL = PLM1 are very close to the chain Fisher index for all periods.  For less
extreme data sets, the fixed base Laspeyres and fixed base geometric indices will be closer to the chained
Fisher index.
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16.     We repeat the computations for the Lloyd Moulton indices that are listed in Table
3.3.14 except that we now use the chain principle to construct the Lloyd Moulton indices;
see Table 3.3.15.  Again, we are trying to approximate the chained Fisher price index PF

which is listed as column 2 in Table 3.3.15.  In Table 3.3.15, PLM0 is the chained
Laspeyres index and PLM1 is the chained geometric Laspeyres or geometric index using
the expenditure shares of the previous period as weights.

Table 3.3.15  Chained Fisher and Chained Lloyd Moulton Indices

Period     PF       PLM0     PLM.2    PLM.3     PLM.4    PLM.5    PLM.6    PLM.7    PLM.8     PLM1

     1      1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
     2      1.4011  1.4200  1.4005  1.3910  1.3818  1.3727  1.3638  1.3551  1.3466  1.3300
     3      1.3185  1.3646  1.3242  1.3039  1.2834  1.2628  1.2421  1.2212  1.2002  1.1578
     4      1.2689  1.3351  1.2882  1.2646  1.2409  1.2171  1.1932  1.1692  1.1452  1.0968
     5      1.2226  1.3306  1.2702  1.2400  1.2097  1.1793  1.1488  1.1183  1.0878  1.0266

Viewing Table 3.3.15, it can be seen that again no single choice of the elasticity of
substitution σ will lead to a Lloyd Moulton price index PLMσ that will closely
approximate the chained Fisher index PF for all periods.  To approximate PF in period 2,
we should choose σ close to 0.1; to approximate PF in period 3, we should choose σ close
to 0.2; to approximate PF in period 4, we should choose σ between 0.2 and 0.3 and to
approximate PF in period 5, we should choose σ between 0.3 and 0.4.  However, it should
be noted that if we choose  equal to 0.3 and use the chained Lloyd Moulton index PLM.3

to approximate the chained Fisher index PF, we will have a much better approximation
than that provided by either the chained Laspeyres index (see PLM0 in column 3 of Table
3.3.15) or the fixed base Laspeyres index (see PLM0 in column 3 of Table 3.3.14).173

Hence our tentative conclusions on the use of the Lloyd Moulton index to approximate
superlative indices are:

• the elasticity of substitution parameter σ which appears in the Lloyd Moulton formula
is unlikely to remain constant over time and hence it will be necessary for statistical
agencies to update their estimates of σ at regular intervals and

• the use of the Lloyd Moulton index as a real time preliminary estimator for a chained
superlative index seems warranted, provided that the statistical agency can provide
estimates for chained superlative indices on a delayed basis.  The Lloyd Moulton
index would provide a useful supplement to the traditional fixed base Laspeyres
price index.

17.     The final formulae we illustrate using our artificial data set are the additive
percentage change decompositions for the Fisher ideal index that were discussed in

                                                
173 For this particular data set, the fixed base or chained geometric indices using either the expenditure
weights of period 1 (see the last column of Table 3.3.14) or using the weights of the previous period (see
the last column of Table 3.3.15) do not approximate the chained Fisher index very closely.  However, for
less extreme data sets, the use of chained Laspeyres or geometric indices may approximate a chained
superlative index adequately.
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section F.8 of Chapter 3.  We will first decompose the chain links for the Fisher price
index using the formulae (3.60) to (3.62) listed in section F.8.  The results of the
decomposition are listed in Table 3.3.16.  Thus PF − 1 is the percentage change in the
Fisher ideal chain link  going from period t − 1 to t and the decomposition factor vFi∆pi =
vFi (p i

t − p i
t−1) is the contribution to the total percentage change of the change in the ith

price from pi
t−1 to pi

t for i = 1,2,…,6.

Table 3.3.16  An Additive Percentage Change Decomposition of the Fisher Index

Period t   PF  1     vF1 p1     vF2 p2     vF3 p3     vF4 p4     vF5 p5     vF6 p6

      2        0.4011     0.0176     0.1877     0.0580    -0.0351     0.1840    -0.0111
      3       -0.0589    -0.0118   -0.1315     0.0246    -0.0274     0.0963    -0.0092
      4       -0.0376    -0.0131   -0.0345     0.0111    -0.0523     0.0635    -0.0123
      5       -0.0365     0.0112     0.0316     0.0000    -0.0915     0.0316    -0.0194

Viewing Table 3.3.16, it can be seen that the price index going from period 1 to 2 grew
about 40% and the major contributors to this change were the increases in the price of
commodity 2, energy (18.77%) and in commodity 5, traditional services (18.4%).  The
increase in the price of traditional manufactured goods, commodity 3, contributed 5.8%
to the overall increase of 40.11%.  The decreases in the prices of high technology goods
(commodity 4) and high technology services (commodity 6) offset the other increases by
−3.51% and −1.11% going from period 1 to 2.  Going from period 2 to 3, the overall
change in prices was negative: −5.89%.  The reader can read across the third row of
Table 3.3.16 to see what was the contribution of the 6 component price changes to the
overall price change.  It can be seen that a big price change in a particular component i
combined with a big expenditure share in the two periods under consideration will lead to
a big decomposition factor, vFi.

18.     Our final set of computations we illustrate using our artificial data set is the
additive percentage change decomposition for the Fisher ideal index that is due to Van
Ijzeren (1987; 6) that was mentioned in section F.8 of Chapter 3.  The price counterpart
to the additive decomposition for a quantity index, equation (3.49) in Chapter 3, is:

(3.3.3)  PF(p0,p1,q0,q1) = ∑i=1
n qFi*pi

1 / ∑i=1
n qFi*pi

0

where the reference quantities need to be defined somehow.  Van Ijzeren (1987; 6)
showed that the following reference weights provided an exact additive representation
for the Fisher ideal price index:

(3.3.4)  qFi* ≡ (1/2)qi
0 + (1/2)qi

1/QF(p0,p1,q0,q1) ;       i = 1,2,….,6

where QF is the overall Fisher quantity index.  Thus using the Van Ijzeren quantity
weights qFi*, we obtain the following Van Ijzeren additive percentage change
decomposition for the Fisher price index:

(3.3.5)  PF(p0,p1,q0,q1) − 1 = {∑i=1
6 qFi*pi

1 / ∑m=1
6 qFi*pm

0} − 1
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                                           = {∑i=1
6 qFi*pi

1 − ∑m=1
6 qFi*pi

0} / ∑m=1
6 qFi*pm

0

                                           = ∑i=1
6 vFi*{pi

1 − pi
0}

where the Van Ijzeren weight for commodity i, vFi*, is defined as

(3..3.6)  vFi* ≡ qFi* / ∑m=1
n qFi*pm

0     ; i = 1,…,6.

We will again decompose the chain links for the Fisher price index using the formulae
(3.3.4) to (3.3.6) listed above.  The results of the decomposition are listed in Table 3.3.17.
Thus PF − 1 is the percentage change in the Fisher ideal chain link going from period t −
1 to t and the Van Ijzeren decomposition factor vFi*∆pi is the contribution to the total
percentage change of the change in the ith price from pi

t−1 to pi
t for i = 1,2,…,6.

Table 3.3.17  Van Ijzeren’s Decomposition of the Fisher Price Index

Period t   PF  1     vF1* p1     vF2* p2    vF3* p3    vF4* p4    vF5* p5    vF6* p6

      2        0.4011      0.0178      0.1882      0.0579     -0.0341      0.1822     -0.0109
      3       -0.0589     -0.0117    -0.1302      0.0243     -0.0274      0.0952     -0.0091
      4       -0.0376     -0.0130    -0.0342      0.0110     -0.0521      0.0629     -0.0123
      5       -0.0365      0.0110      0.0310      0.0000     -0.0904      0.0311     -0.0191

Comparing the entries in Tables 3.3.16 and 3.3.17, it can be seen that the differences
between the Diewert and Van Ijzeren decompositions of the Fisher price index are very
small.  The maximum absolute difference between the vFi∆pi and vFi*∆pi is only 0.0018
(about 0.2 percentage points) and the average absolute difference is 0.0003.  This is
somewhat surprising given the very different nature of the two decompositions.174  As
was mentioned in section F.8 of Chapter 3, the Van Ijzeren decomposition of the chain
Fisher quantity index is used by the Bureau of Economic Analysis in the U.S.
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