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Abstract

We investigate equilibria of sealed-bid second price auctions with
bidder participation costs in the independent private values environ-
ment. We focus on equilibria in which bidders use cut-off strategies
(bid the valuation if it is greater than a certain cut-off point, other-
wise do not participate), since if a bidder finds participating optimal,
she cannot do better than bidding her valuation. When the bidders
are symmetric, the concavity (respectively, strict convexity) of the
c.d.f. from which the valuations are drawn is a sufficient condition
for uniqueness (respectively, multiplicity) within this class. We also
study a special case with asymmetric bidders and show that concav-
ity/convexity plays a similar role.

JEL Classification: C62, C72, D44, D82
Keywords: Second price auctions; participation costs; multiplicity

of equilibria

1 Introduction

In this paper, we investigate equilibria of sealed-bid second price auctions
(also called Vickrey auctions) with bidder participation costs in the indepen-
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dent private values environment.1 When the bidders are ex-ante symmetric,
i.e., their valuations are drawn from the same distribution, the literature,
in general, has focused on the unique symmetric equilibrium in which each
bidder bids her valuation if it is greater than the cut-off point (common to all
bidders), otherwise chooses not to participate.2 We want to know when, if at
all, this is the only equilibrium. We also want to identify sufficient conditions
for existence of asymmetric equilibria.
It is not a weakly dominant strategy for a bidder, as it is the case when

there is no participation cost, to always bid her valuation. However, given
the strategies of others, if a bidder finds participating optimal, she cannot do
better than bidding her valuation. Therefore, we focus on equilibria in which
each bidder uses a cut-off strategy (bid her valuation if it is greater than a
certain cut-off point, otherwise do not participate), so, for example, results
about uniqueness of equilibria refer to uniqueness within this class. When the
bidders are symmetric, there is a unique symmetric equilibrium. We show
that if the valuations of the bidders are distributed according to a concave
cumulative distribution function (c.d.f.), then there is no other equilibrium.3

If the c.d.f. is strictly convex, on the other hand, then there will always
be asymmetric equilibria.4 In particular, there will always be “two cut-off”
equilibria: Arbitrarily divide the set of bidders into two groups. There is an
equilibrium in which bidders in the same group use the same cut-off that is
different than the one used by the other group. Furthermore, if the c.d.f. is
log-concave, then at most two cut-off points are used in any equilibrium.
The existence of asymmetric equilibria has important consequences for

both efficiency of the auction mechanism and the seller’s revenue. To begin
with, asymmetric equilibria will necessarily be ex-post inefficient: the bidder
with the highest valuation does not always get the object. Secondly, Stege-
man (1996) considers ex-ante efficient mechanisms (maximizing expected to-
tal surplus net of participation costs) in the same environment and shows that
the second price auction will have an ex-ante efficient equilibrium, whereas

1In the analysis below, bidder “participation cost” can be replaced by “entry fee”
charged by the seller without any change in the formal model or results. Accordingly, we
will use both interpretations in our discussions.

2The only exception that we are aware of is Stegeman (1996), where there is also an
example with two equilibria.

3Concavity of the c.d.f. may be even more restrictive than it seems. See Remark 3 in
Section 3.

4See Remark 2 in Section 3 on the effect of a binding reserve price.
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the first price auction has an efficient equilibrium if and only if the sec-
ond price auction has an efficient symmetric equilibrium. So, by finding
sufficient conditions for uniqueness of equilibrium (necessarily symmetric),
we also identify environments in which both first and second price auctions
are ex-ante efficient mechanisms. Thirdly, consider the entry fee interpreta-
tion. The result that, under certain assumptions, the second price auction
with appropriately chosen reserve price and entry fee is the seller’s optimal
mechanism depends on bidders playing the symmetric equilibrium. If the
seller uses an entry fee, then her revenue from an asymmetric equilibrium
will (generically) be lower than the maximum possible, i.e., revenue from
the symmetric equilibrium. Finally, in a repeated auction environment, the
asymmetric equilibria of the stage game that we identify can be used to
construct collusive repeated game equilibria.
We also look at a special case with asymmetric bidders. There are two

groups of bidders, where bidders are symmetric within groups, and one group
is “stronger” than the other, i.e., bidders in this group are more likely to have
higher valuations. Besides the literal interpretation, this case may also en-
dogenously arise during the cartel formation process among symmetric bid-
ders, as in Tan and Yilankaya (2003). We concentrate on equilibria that are
symmetric within groups, given that within group asymmetries pose similar
issues that we analyzed in the symmetric bidders case. We show that the
“intuitive” equilibrium, where the strong bidders are more likely to partic-
ipate in the auction, always exists, and this type of equilibrium is unique
when both c.d.f.’s are concave. When the weak bidders’ c.d.f. is concave,
there is never an equilibrium in which they are more likely to participate in
the auction. When it is strictly convex, on the other hand, there will be such
counterintuitive equilibria, as long as the participation cost is high enough.
In the next section we briefly describe the setup. We look at the cases of

symmetric and asymmetric bidders in Sections 3 and 4, respectively. All the
proofs are in the Appendix.

2 The Setup

There are n ≥ 2 risk-neutral (potential) bidders. The valuation of bidder i
is vi, which is private and distributed on [0, 1], independent of other bidders’
valuations, with c.d.f. Fi(.) that has continuous density fi(.).
The auction format is sealed-bid second price. There is a participation
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cost, common to all bidders, denoted by c ∈ (0, 1); bidders must incur c in
order to be able to submit a bid. Bidders know their valuations before they
decide whether to participate in the auction. Bidders do not know others’
participation decisions when they make theirs.5

Let the feasible action set for any type of bidder be: {No}∪ [0,∞), where
“No” denotes not participating; bidder i incurs the participation cost iff her
action is different from “No”. Let bi(vi) denote i’s strategy.
If a bidder finds participating optimal, she cannot do better than bidding

her valuation.6 Therefore, we focus on the equilibria in which each bidder
uses a cut-off strategy, where she bids her valuation if it is greater than a
certain cut-off point, otherwise she does not participate.7 That is for each
bidder,

bi(vi) =

½
No if vi ≤ ai
vi if vi > ai

,

where, without loss of generality, ai ∈ [0, 1], and ai = 1 means that bidder
i does not participate in the auction whatever her valuation is. Since we
restrict attention to cut-off strategies, from now on we focus only on cut-off
points. Notice that in every equilibrium ai ≥ c for all i. Moreover, whenever
ai < 1, it is determined by an indifference condition (between participating
and not participating) for type-ai bidder. If ai = 1, then bidder i’s payoff
when vi = 1 must be nonpositive.
Unless specified, results below are valid for all c ∈ (0, 1).

3 Symmetric Bidders

In this section we analyze the case in which bidders’ valuations are drawn
from the same distribution function, i.e., Fi(.) = F (.) ∀i. It is well known
that there is a unique symmetric equilibrium; we include this result here for
completeness.

5See, for example, Samuelson (1985) and Matthews (1995) for auctions with participa-
tion costs or entry fees.

6See, for example, Matthews (1995).
7Blume and Heidhues (2003) characterize all equilibria of the second price auction both

with and without a reserve price. See Remark 1 below about the effect of the participation
cost on the possible existence of other equilibria.
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Proposition 1 There exists a unique symmetric equilibrium in which ai =
a∗ ∀i, where

a∗F (a∗)n−1 = c.

When F (.) is concave this is the only equilibrium: No asymmetric equi-
librium exists.

Proposition 2 If F (.) is concave, then no asymmetric equilibrium exists.

On the other hand, when F (.) is strictly convex there will always be
asymmetric equilibria. In particular, if we partition the set of bidders into
two groups in any way, then there will be an equilibrium where all the bidders
within a group use the same cut-off that is different than the cut-off used by
bidders in the other group. Furthermore, when F (.) is log-concave there is
no equilibria in which three or more cut-off points are used. Thus, when F (.)
is both strictly convex and log-concave, the set of equilibria is characterized
by Propositions 1 and 3i.

Proposition 3 i) If F (.) is strictly convex, then, for any k ∈ {1, 2, ..., n−1},
there exists an asymmetric equilibrium in which k bidders use cut-off point
a, n− k bidders use cut-off point b, where a < a∗ < b,

aF (a)k−1F (b)n−k − c = 0, (1)

and

F (b)n−k−1[aF (a)k +
Z b

a

F (y)kdy]− c ≤ 0, (2)

and (2) holds with equality whenever b < 1.
ii) If F (.) is log-concave, then there is no equilibrium in which three or

more (distinct) cut-off points are used.

To illustrate the role played by concavity/convexity of the c.d.f. on the
possible existence of asymmetric equilibria, consider the case of two-bidders.
Denote the first (respectively, second) bidder’s cut-off by a (respectively, b),
where, without loss of generality, b ≥ a. Expected net-payoff of the first
bidder must be zero when her type is a:

5



aF (b)− c = 0. (3)

Similarly, for the second bidder the following must be true (with equality
whenever b < 1):

bF (a) +

Z b

a

(b− y)dF (y)− c ≤ 0,

where the first term on the left-hand side is the payoff to type-b bidder 2 when
bidder 1 does not participate and the second term is the payoff when bidder
1’s valuation is between a and b. After integration by parts, the inequality
becomes

aF (a) +

Z b

a

F (y)dy − c ≤ 0. (4)

Obviously, (3) and (4) admit a symmetric equilibrium cut-off point, a = b =
ā, determined by āF (ā)− c = 0. To see whether there exists an asymmetric
equilibrium, using (3) and (4), let α(β) = c

F (β)
and

π(β) = α(β)F (α(β)) +

Z β

α(β)

F (y)dy − c,

where β ∈ [ā, 1]. Notice that π(.) is the net-payoff to type-β bidder 2, taking
into account the best response of bidder 1 to bidder 2’s use of cut-off β, and
also that it is continuous and π(ā) = 0.
An interior asymmetric equilibrium exists and given by a = α(β∗) and

b = β∗ iff π(β∗) = 0 for β∗ ∈ (ā, 1). A corner asymmetric equilibrium exists,
with a = c and b = 1, iff π(1) ≤ 0. Therefore, existence of asymmetric
equilibria depends on the sign of π(1) and whether π(β∗) = 0 for some
β∗ ∈ (ā, 1).
Consider a concave F (.). In this case π(.) is strictly increasing, and

hence π(β) > 0 for all β ∈ (ā, 1]. Therefore, an asymmetric (interior or
corner) equilibrium cannot exist. Now, suppose that F (.) is strictly convex.
If π(1) ≤ 0 (this happens for c large enough), then there is an equilibrium
with a = c and b = 1. If π(1) > 0, then there exists β∗ ∈ (ā, 1) such that
π(β∗) = 0, i.e., an interior asymmetric equilibrium exists, since π(ā) = 0 and
π(.) is strictly decreasing at ā when F (.) is strictly convex.
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Remarks:

1) Let r denote the reserve price. There is an equilibrium (in weakly
dominated strategies) of the second price auction with r = c = 0 in which
one of the bidders bids, say, 1, and others bid 0. Blume and Heidhues
(2003) show that, when r > 0 (and c = 0), there is essentially a unique
equilibrium in which each bidder bids her valuation whenever it is greater
than the reserve price, as long as there are at least three bidders. When
c > 0, equilibria in weakly dominated strategies may exist, and, interestingly
enough, the concavity/convexity of the c.d.f. plays a similar role. Suppose
r = 0 and c > 0, and consider the following strategy profile: One bidder
bids 1 if her valuation is greater than c, otherwise she does not participate;
other bidders never participate. For this profile to be an equilibrium, we only
need to check that the highest possible payoff of nonparticipating bidders is
nonpositive, i.e., F (c)− c ≤ 0. It follows that, for any c, when F (.) is convex
this strategy profile is an equilibrium, and when F (.) is strictly concave, it is
not. Consider the following profile when 0 < r, c, r+c < 1: One bidder bids 1
if her valuation is greater than r+c, otherwise she does not participate; other
bidders never participate. Again, this is an equilibrium iff the highest possible
payoff of nonparticipating bidders is nonpositive, i.e., F (r+c)(1−r)−c ≤ 0.
When F (.) is concave, this is never the case, when F (.) is strictly convex it
depends on the magnitude of r and c.

2) Existence of a reserve price does not affect Propositions 1 and 2, except
that the equation for the symmetric cut-off a∗ becomes:

(a∗ − r)F (a∗)n−1 = c.
With a reserve price, strict convexity of F (.) is no longer sufficient for exis-
tence of multiple equilibria specified in Proposition 3 . It is not difficult to
show that (following the current proof after adjusting the equations (1) and
(2)), for any given r and c, a sufficient condition for existence of asymmetric
equilibria is:

F (a∗)− (a∗ − r)f(a∗) < 0,
where a∗ is the symmetric cut-off defined above. We used strict convexity
as a sufficient condition in Proposition 3, rather than the inequality above
(with r = 0), for the result to hold for every c.
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3) The assumption that the bidders valuations are bounded from above by
1 is without loss of generality. However, it is crucial that the lowest possible
valuation of a bidder is zero for the uniqueness result in Proposition 2 to
be meaningful. When the lowest possible bidder valuation is greater than
zero, this will introduce convexity, even if F (.) is concave when its domain is
restricted to its support, and there will be asymmetric equilibria. Stegeman’s
(1996) example belongs to this case.

4) When F (.) is neither concave nor convex, the existence of asymmetric
equilibria depends on the magnitude of the participation cost. For example,
suppose there are two bidders whose valuations are distributed according to
F (v) = v3 − v2 + v. (Notice that F 00(.) > 0 iff v > 1

3
.) It is not difficult to

show that there exists an asymmetric equilibrium iff c > .1875.

5) When F (.) is convex, but not log-concave, there may exist equilibria

with three or more cut-off points. Let n = 3, F (v) = v+v5

2
( f(.)
F (.)

is increasing

iff v & 0.57),and c = 0.15. There is an equilibrium in which bidders use
(approximately) 0.3938, 0.8034, and 0.8622 as cut-offs.

4 Asymmetric Bidders

In this section we look at the case in which there are two groups of bidders. In
particular, there are s “strong” bidders whose valuations are distributed with
G(.), and n − s “weak” bidders whose valuations are distributed according
to F (.), where s ∈ {1, 2, ...n− 1} and G(v) < F (v) for all v ∈ (0, 1).
We concentrate on equilibria that are symmetric within groups, i.e., every

strong (respectively, weak) bidder uses the same cut-off point.8 Denote the
strong bidders’ cut-off by a, and the weak bidders’ by b.
We first show that the “intuitive” equilibrium, where the strong bidders

are more likely to participate in the auction, always exists independent of
the distribution functions. Moreover, if both c.d.f.’s are concave, then there
is a unique intuitive equilibrium.

Proposition 4 There exists an equilibrium with b > a. If F (.) and G(.) are
concave, then there is a unique equilibrium with b > a.

8The issue of within-group asymmetry is similar to that of the previous section, and
thus ignored.
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When F (.) is concave, there is never an equilibrium in which weak bidders
are more likely to participate in the auction. However, when F (.) is strictly
convex, as long as the participation cost is high enough, there will be such
counterintuitive equilibria.

Proposition 5 i) If F (.) is concave, then there is no equilibrium with a > b.
ii) If F (.) is strictly convex, then ∃c∗ < 1 s.t. there is an equilibrium with

a > b whenever c > c∗.

5 Appendix

Proof of Proposition 1. All the bidders will use the cut-off point a∗ ∈
(c, 1) given by

a∗F (a∗)n−1 = c.

Such a unique a∗ exists, since vF (v)n−1 is continuous, strictly increasing, and

cF (c)n−1 < c < 1F (1)n−1 = 1.

Proof of Proposition 2. Suppose there exists an asymmetric equilib-
rium. Fix one. Let a1 < a2 < ... < ak be the cut-off points used by bidders,
and denote the number of bidders using ai by ni. We have

a1F (a1)
n1−1F (a2)n2p = c

and

pF (a2)
n2−1[a2F (a1)n1 +

Z a2

a1

(a2 − y)dF (y)n1 ] ≤ c,

or after integration by parts:

pF (a2)
n2−1[a1F (a1)n1 +

Z a2

a1

F (y)n1dy] ≤ c,

where p is the probability of valuations of bidders who use a3, ..., ak be less
than their corresponding cut-off points. Combining these:

a1F (a1)
n1−1F (a2) ≥ a1F (a1)n1 +

Z a2

a1

F (y)n1dy >

a1F (a1)
n1 + (a2 − a1)F (a1)n1 = a2F (a1)n1,
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or

F (a2)

a2
>
F (a1)

a1
,

which is a contradiction with F (.) being concave and a2 > a1.
Proof of Proposition 3. i) The indifference condition for k bidders

who use a:

aF (a)k−1F (b)n−k − c = 0. (5)

Notice that the curve representing this equation in (a, b) plane is decreasing,
and it passes through (a, b) = (a∗, 1) and (a∗, a∗), where a ∈ [a∗, a∗], and
a∗ > a∗ are given by: a∗F (a∗)k−1 − c = 0, and a∗F (a∗)n−1 − c = 0.9
The indifference condition for n− k bidders who use b:

F (b)n−k−1[aF (a)k +
Z b

a

F (y)kdy]− c = 0. (6)

This also gives a decreasing curve that passes through (a∗, a∗). If (a∗, 1) lies
below this curve, then we have an equilibrium with cut-off points a∗ and 1,
and we are done. Assume otherwise, then. When a = a∗, the second curve
is below the first one, and when a = a∗, two curves intersect. We need to
show that these curves intersect at some a ∈ (a∗, a∗) to prove the existence
of the desired asymmetric equilibrium. For this, we only need to show that
the second curve is steeper than the first one at a = a∗. From (5):¯̄̄̄

db

da

¯̄̄̄
(5)

=
(k − 1)af(a)F (b) + F (a)F (b)

(n− k)aF (a)f(b) ,

and from (6):¯̄̄̄
db

da

¯̄̄̄
(6)

=
kaf(a)F (a)k−1F (b)

F (b)k+1 + (n− k − 1)f(b)[aF (a)k + R b
a
F (y)kdy]

.

At a = b = a∗, these are equal to, correspondingly,¯̄̄̄
db

da

¯̄̄̄
(5)

=
(k − 1)a∗f(a∗) + F (a∗)

(n− k)a∗f(a∗) ,

9We are abusing the notation here, since (a, b) denoted the solution to two indifference
conditions.
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and ¯̄̄̄
db

da

¯̄̄̄
(6)

=
ka∗f(a∗)

F (a∗) + (n− k − 1)a∗f(a∗) .

Since F (.) is strictly convex, a∗f(a∗) > F (a∗), and the conclusion follows.
ii) If n = 2, then the claim is vacuously true. Let n ≥ 3. Suppose there

exists an equilibrium in which three or more cut-off points are used. Fix one.
Let a1 < a2 < ... < ak , k ≥ 3, be the cut-off points used by bidders, and
denote the number of bidders using ai by ni. We have

a1F (a1)
n1−1F (a2)n2F (a3)n3p = c, (7)

F (a2)
n2−1F (a3)n3p[a1F (a1)n1 +

Z a2

a1

F (y)n1dy] = c, (8)

and

a3F (a1)
n1F (a2)

n2F (a3)
n3−1p+ F (a2)n2F (a3)n3−1p

Z a2

a1

(a3 − y)dF (y)n1

+F (a3)
n3−1p

Z a3

a2

(a3 − y)dF (y)n1+n2 ≤ c,

where p is the probability that all the bidders who have cutoff points ai, i > 3,
do not participate. After integration by parts, the last condition becomes

F (a2)
n2F (a3)

n3−1p[a1F (a1)n1 +
Z a2

a1

F (y)n1dy] + F (a3)
n3−1p

Z a3

a2

F (y)n1+n2dy ≤ c.
(9)

Combining (7) and (8) yields

F (a2)
n2F (a3)

n3p
R a2
a1
F (y)n1dy

F (a2)− F (a1) = c.

Similarly, combining (8) and (9) yields

F (a3)
n3p
R a3
a2
F (y)n1+n2dy

F (a3)− F (a2) ≤ c.
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Since F (y) > F (a2) for y > a2, it follows that

R a3
a2
F (y)n1dy

F (a3)− F (a2) <
R a2
a1
F (y)n1dy

F (a2)− F (a1)
or, equivalently,

φ(x3)− φ(x2)

x3 − x2 <
φ(x2)− φ(x1)

x2 − x1 , (10)

where xi = F (ai) and

φ(x) =

Z F−1(x)

0

F (y)n1dy.

Note that

φ
0
(x) =

F (F−1(x))n1

f(F−1(x))
,

so that φ(.) is strictly increasing and convex, since F (.) is strictly increasing

and F (.)
f(.)

increasing (F (.) is log-concave). This contradicts (10).
Proof of Proposition 4. In any such equilibrium, we have

aG(a)s−1F (b)n−s − c = 0, (11)

F (b)n−s−1[aG(a)s +
Z b

a

G(y)sdy]− c ≤ 0. (12)

Define a(b) from (11), and let ebG(eb)s−1F (eb)n−s − c = 0, i.e., a(eb) = eb, and
h(b) = F (b)n−s−1[a(b)G(a(b))s +

Z b

a(b)

G(y)sdy]− c.

Notice that h(b) is continuous, b ∈ [eb, 1],
h(eb) = ebG(eb)sF (eb)n−s−1 − c

=
G(eb)
F (eb)c− c < 0,
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and

h(1) = cG(c)s +

Z 1

c

Gs(y)dy − c.

Now, if h(1) > 0, then there is an equilibrium with a < b < 1. If h(1) < 0,
then there is an equilibrium with b = 1 and a = a(1) < 1.
This equilibrium is unique if F (.) and G(.) are concave. Notice that (11)

is decreasing. Substituting for c from (11), (12) becomes:

aG(a)s +

Z b

a

G(y)sdy − aG(a)s−1F (b) = 0.

We will show that this curve is increasing, and so it has a unique intersection
with (11).

db

da
=
−asG(a)s−1g(a) + F (b)[a(s− 1)G(a)s−2g(a) +G(a)s−1]

G(b)s − aG(a)s−1f(b) .

The numerator is positive, since F (b) > G(b) > G(a) ≥ ag(a), where the last
inequality follows from the concavity of G(.). Moreover,

aG(a)s + (b− a)G(b)s − aG(a)s−1F (b) > aG(a)s +
Z b

a

G(y)sdy − aG(a)s−1F (b) = 0,

bG(b)s − aG(a)s−1F (b) > aG(b)s − aG(a)s > 0,

or

G(b)s > aG(a)s−1
F (b)

b
≥ aG(a)s−1f(b),

where the last inequality follows from the concavity of F (.). Hence db
da
> 0.

Proof of Proposition 5. i) Suppose there is such an equilibrium.
Then

bF (b)n−s−1G(a)s − c = 0, (13)
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G(a)s−1[bF (b)n−s +
Z a

b

F (y)n−sdy]− c ≤ 0.

Combining,

bF (b)n−s−1G(a)− bF (b)n−s ≥
Z a

b

F (y)n−sdy > (a− b)F (b)n−s,

or

G(a)

a
>
F (b)

b
,

which is a contradiction, since concavity of F (.) implies that F (b)
b
≥ F (a)

a
≥

G(a)
a
.
ii) Define a(b) from (13), and notice that b ∈ [b1, b2], where b1F (b1)n−s−1−

c = 0 and b2F (b2)
n−s−1G(b2)s − c = 0, so that a(b1) = 1 and a(b2) = b2. Let

h(b) = G(a(b))s−1[bF (b)n−s +
Z a(b)

b

F (y)n−sdy]− c.

We have the required equilibrium iff ∃b∗ ∈ [b1, b2] with h(b∗) = 0. We know
that

h(b2) = b2F (b2)
n−sG(b2)s−1 − c > 0,

since F (b2) > G(b2). We only need, then,

h(b1) = b1F (b1)
n−s +

Z 1

b1

F (y)n−sdy − c < 0.

From its definition, b1 is an (increasing) function of c. What we need is,

h̃(c) = b1(c)F (b1(c))
n−s +

Z 1

b1(c)

F (y)n−sdy − c < 0.

Now, h̃(1) = 0 and h̃0(1) > 0 if F (.) is strictly convex. Hence, ∃c∗ < 1 s.t.
h̃(c) < 0 whenever c > c∗.
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