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Abstract

The chapter considers the measurement of capital services aggregates under alternative
assumptions about the form of depreciation, the opportunity cost of capital and the
treatment of capital gains. Four different models of depreciation are considered: (1) one
hoss shay or light bulb depreciation; (2) straight line depreciation; (3) declining balance
or geometric depreciation and (4) linearly declining efficiency profiles. The chapter also
considers the differences between cross section and time series depreciation and
anticipated time series depreciation (which adds anticipated obsolescence of the asset to
normal cross section depreciation of the asset). Finally, issues involving the
measurement of certain intangible capital stocks are considered.
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1. Introduction’

In this chapter, we discuss some of the problems involved in constructing price and
quantity series for both capital stocks and the associated flows of services when there are
general and asset specific price changes in the economy.”

In section 2, we present the basic equations relating stocks and flows of capital assuming
that data on the prices of vintages of a homogeneous capital good are available. This
framework is not applicable under all circumstances but it is a framework that will allow
us to disentangle the effects of general price change, asset specific price change and
depreciation.

Section 3 continues the theoretical framework that was introduced in section 2. We show
how information on vintage asset prices, vintage rental prices and vintage depreciation
rates are all equivalent under certain assumptions; i.e., knowledge of any one of these
three sequences or profiles is sufficient to determine the other two.

Section 4 discusses alternative sets of assumptions on nominal interest rates and
anticipated asset price changes. We specify three different sets of assumptions that we
will use in our empirical illustration of the suggested methods.

Section 5 discusses the significance of our assumptions made in the previous section and
relates them to controversies in national income accounting. In particular, we discuss
whether anticipated asset price decline should be an element of depreciation as
understood by national income accountants.

Section 6 discusses the problems involved in aggregating over vintages of capital, both in
forming capital stocks and capital services. Instead of the usual perpetual inventory
method for aggregating over vintages, which assumes perfectly substitutable vintages of
the same stock, we suggest the use of a superlative index number formula to do the
aggregation.

Sections 7 to 10 show how the general algebra presented in sections 2 and 3 can be
adapted to deal with four specific models of depreciation. The four models considered
are the one hoss shay model, the straight line depreciation model, the geometric model of
depreciation and the linear efficiency decline model. In section 11, we show how these
models differ empirically by computing the corresponding stocks and flows using
Canadian data on two asset classes. The details of the computations and the data used
may be found in Diewert (2004).

Section 12 shows how our framework can be modified to model the treatment of some
forms of intangible capital, such as investments in research and development.

Section 13 concludes with some observations on how statistical agencies might be able to
use the material presented in this chapter.

! The author is indebted to Carol Corrado, Kevin Fox, John Haltiwanger, Peter Hill, Ning Huang, Ulrich
Kohli, Alice Nakamura, Paul Schreyer, Dan Sichel and Frank Wykoff for helpful comments. This research
was supported by a SSHRC research grant. None of the above are responsible for any errors or opinions
expressed in the paper. A longer version of the present paper, including the data used, is available as
Department of Economics Discussion Paper 04-10, University of British Columbia, Vancouver, Canada.

> We cover some of the same issues discussed in the recent paper by Hill and Hill (2003). However, Hill

and Hill did not deal with the problems associated with adjusting nominal interest rates for general
inflation.



2. The Fundamental Equations Relating Stocks and Flows of Capital

Before we begin with our algebra, it seems appropriate to explain why accounting for the
contribution of capital to production is more difficult than accounting for the
contributions of labour or materials. The main problem is that when a reproducible
capital input is purchased for use by a production unit at the beginning of an accounting
period, we cannot simply charge the entire purchase cost to the period of purchase. Since
the benefits of using the capital asset extend over more than one period, the initial
purchase cost must be distributed somehow over the useful life of the asset. This is the
fundamental problem of accounting.

In a noninflationary environment, the value of an asset at the beginning of an accounting
period is equal to the discounted stream of future rental payments that the asset is
expected to yield. Thus the stock value of the asset is equal to the discounted future
service flows’ that the asset is expected to yield in future periods. Let the price of a new
capital input purchased at the beginning of period t be P,. In a noninflationary
environment, it can be assumed that the (potentially observable) sequence of (cross
sectional) vintage rental prices prevailing at the beginning of period t can be expected to
prevail in future periods. Thus in this no general inflation case, there is no need to have a
separate notation for future expected rental prices for a new asset as it ages. However, in
an inflationary environment, it is necessary to distinguish between the observable rental
prices for the asset at different ages at the beginning of period t and future expected rental
prices for assets of various ages.* Thus let f ,' be the (observable) rental price of a new
asset at the beginning of period t, let f,' be the (observable) rental price of a one period
old asset at the beginning of period t, let f,' be the (observable) rental price of a 2 period
old asset at the beginning of period t, etc. Then the fundamental equation relating the
stock value of a new asset at the beginning of period t, P, to the sequence of cross
sectional rejntal prices for assets of age n prevailing at the beginning of period t, {f,': n =
0,1,2,...}1s™:

(1) Py =1£ + [(1+1,)/(1+r O] £, + [(14+1, )1+, )/ (141, )(1+,0] £, + ...

In the above equation, 1+i,' is the rental price escalation factor that is expected to apply
to a one period old asset going from the beginning of period t to the end of period t (or
equivalently, to the beginning of period t+1), (1+1,)(1+i,") is the rental price escalation
factor that is expected to apply to a 2 period old asset going from the beginning of period
t to the beginning of period t+2, etc. Thus the i,' are expected rates of price change for
used assets of varying ages n that are formed at the beginning of period t. The term 1+r,'
is the discount factor that makes a dollar received at the beginning of period t equivalent
to a dollar received at the beginning of period t+1, the term (1+r,")(1+r,") is the discount
factor that makes a dollar received at the beginning of period t equivalent to a dollar
received at the beginning of period t+2, etc. Thus the r,' are one period nominal interest
rates that represent the term structure of interest rates at the beginning of period t.°

3 Walras (1954) (first edition published in 1874) was one of the earliest economists to state that capital

stocks are demanded because of the future flow of services that they render. Although he was perhaps the
first economist to formally derive a user cost formula as we shall see, he did not work out the explicit
discounting formula that Bohm-Bawerk (1891; 342) was able to derive.

* Note that these future expected rental prices are not generally observable due to the lack of futures
markets for these future period rentals of the assets of varying ages.

3 The sequence of (cross sectional) vintage rental prices {f,'} is called the age-efficiency profile of the asset.

® Peter Hill has noted a major problem with the use of equation (1) as the starting point of our discussion:
namely, unique assets will by definition not have used versions of the same asset in the marketplace during



We now generalize equation (1) to relate the stock value of an n period old asset at the
beginning of period t, P,', to the sequence of cross sectional vintage rental prices
prevailing at the beginning of period t, {f,}; thus for n =0,1,2,..., we assume:

(2) P, =1+ [(A+,)/(A+r,)] £, + [A+ ) A+ A4+ H(A+0)] £ + .

Thus older assets discount fewer terms in the above sum; i.e., as n increases by one, we
have one less term on the right hand side of (2). However, note that we are applying the
same price escalation factors (1+i,°), (1+i,)(1+i,), ..., to escalate the cross sectional rental
prices prevailing at the beginning of period t, f', f,',..., and to form estimates of future
expected rental prices for each vintage of the capital stock that is in use at the beginning
of period t.

The rental prices prevailing at the beginning of period t for assets of various ages, f;', f,',

.. are potentially observable.” These cross section rental prices reflect the relative
efficiency of the various vintages of the capital good that are still in use at the beginning
of period t. It is assumed that these rentals are paid (explicitly or implicitly) by the users
at the beginning of period t. Note that the sequence of asset stock prices for various ages
at the beginning of period t, P, P/, ... is not affected by general inflation provided that
the general inflation affects the expected asset rates of price change i, and the nominal
interest rates r,’ in a proportional manner. We will return to this point later.

The physical productivity characteristics of a unit of capital of each age are determined
by the sequence of cross sectional rental prices. Thus a brand new asset is characterized
by the vector of current rental prices for assets of various ages, f,, ', f,', ... , which are
interpreted as “physical” contributions to output that the new asset is expected to yield
during the current period t (this is f,'), the next period (this is f,"), and so on. An asset
WhiSCh is one period old at the start of period t is characterized by the vector f', f,’, ...,
etc.

We have not explained how the expected rental price rates of price change i,' are to be
estimated. We shall deal with this problem in section 4 below. However, it should be
noted that there is no guarantee that our expectations about the future course of rental
prices are correct.

At this point, we make some simplifying assumptions about the expected rates of rental
price change for future periods i,' and the interest rates r,. We assume that these
anticipated specific price change escalation factors at the beginning of each period t are
all equal; i.e., we assume:

the current period and so the cross sectional rental prices f,' for assets of age n in period t will not exist for
these assets! In this case, the f,' should be interpreted as expected future rentals that the unique asset is
expected to generate at today’s prices. The (1+i,") terms then summarize expectations about the amount of
asset specific price change that is expected to take place. This reinterpretation of equation (1) is more
fundamental but we chose not to make it our starting point because it does not lead to a completely
objective method for national statisticians to form reproducible estimates of these future rental payments.
However, in many situations (e.g., the valuation of a new movie), the statistician will be forced to attempt
to implement Hill’s (2000) more general model. In section 12 below, we apply a variant of the expected
rentals interpretation of our equations to value intangible capital.

" This is the main reason that we use this escalation of cross sectional rental prices approach to capital
measurement rather than the more fundamental discounted future expected rentals approach advocated by
Hill.

8 Triplett (1996; 97) used this characterization for capital assets of various vintages.



i, =1 n=12,...

We also assume that the term structure of (nominal) interest rates at the beginning of each
period t is constant; i.e., we assume:

@r, =r; n=12,..

However, note that as the period t changes, r' and i' can change.

Using assumptions (3) and (4), we can rewrite the system of equations (2), which relate
the sequence or profile of stock prices of age n at the beginning of period t {P,'} to the

sequence or profile of (cross sectional) rental prices for assets of age n at the beginning
of period t {f,'}, as follows:

(5) Pyl = £ + [(1+HY(1+)] £, + [T/ (1T £ + [(LHY A+ £ + ...
P'=f"+ [(1+)/(1+] £ + [(1+)/(1+H] £ + [(A+)/(1+HP £, + ...
P, = £, + [(1+1)/(1+19)] £ + [(1+1)/(1+H] £, + [(1+H)/(1+9] £ +

Pl= £ [(AH)A4] £+ [AHY A £+ [+ A+ £+ .

On the left hand side of equations (5), we have the sequence of period t asset prices by
age starting with the price of a new asset, P,', moving to the price of an asset that is one
period old at the start of period t, P,', then moving to the price of an asset that is 2 periods
old at the start of period t, P,', and so on. On the right hand side of equations (5), the first
term in each equation is a member of the sequence of rental prices by age of asset that
prevails in the market (if such markets exist) at the beginning of period t. Thus f,' is the
rent for a new asset, f,' is the rent for an asset that is one period old at the beginning of
period t, f,' is the rent for an asset that is 2 periods old, and so on. This sequence of
current market rental prices for the assets of various vintages is then extragolated out into
the future using the anticipated price escalation rates (1+i'), (1+i')>, (1+i')’, etc. and then
these future expected rentals are discounted back to the beginning of period t using the
nominal discount factors (1+r"), (1+1'), (1+1')’, etc. Note that given the period t expected
asset inflation rate i' and the period t nominal discount rate r', we can go from the (cross
sectional) sequence of vintage rental prices {f,'} to the (cross sectional) sequence of
vintage asset prices {P,'} using equations (5). We shall show below how this procedure
can be reversed; i.e., we shall show how given the sequence of cross sectional asset
prices, we can construct estimates for the sequence of cross sectional rental prices.

Bohm-Bawerk (1891; 342) considered a special case of (5) where all service flows f,
were equal to 100 for n =0,1,...,6 and equal to O thereafter, where the asset inflation rate
was expected to be 0 and where the interest rate r was equal to .05 or 5 %.” This is a

special case of what has come to be known as the one hoss shay model and we shall
consider it in more detail in section 7.

Note that equations (5) can be rewritten as follows: '

° Bohm-Bawerk (1891; 343) went on and constructed the sequence of vintage asset prices using his special
case of equations (5).

' Christensen and Jorgenson (1969; 302) do this for the geometric depreciation model except that they
assume that the rental is paid at the end of the period rather than the beginning. Variants of the system of
equations (6) were derived by Christensen and Jorgenson (1973), Jorgenson (1989; 10), Hulten (1990; 128)
and Diewert and Lawrence (2000; 276). Irving Fisher (1908; 32-33) also derived these equations in words.



(6) P, =1, + [(1+)/(1+)] P'
P'=f'+ [(A+)/(1+)] P,
P, =+ [(1+)/(1+)] Py

Pzt [+ P, .

The first equation in (6) says that the value of a new asset at the start of period t, P, is
equal to the rental that the asset can earn in period t, f,','" plus the expected asset value of
the capital good at the end of period t, (1+i') P,', but this expected asset value must be
divided by the discount factor, (1+r'), in order to convert this future value into an
equivalent beginning of period t value."

Now it is straightforward to solve equations (6) for the sequence of period t cross
sectional rental prices, {f,'}, in terms of the cross sectional asset prices, {P,'}:

(7 £,' =P, - [(A+Y(1+] P = (1+)" [P, (1+1) = (1+i) P,]
f'=P,' = [(1+)/(1+r)] P, = (1+r)" [P, (1+1') = (1+i) P,]
£'=P, = [(1+)/(1+r)] Py = (14r)" [P, (1+1) — (1+i) P

=P, = [(4)/(141)] Py = (14 [P (145) = (14 Py s

Thus equations (5) allow us to go from the sequence of rental prices by age n {f,'} to the
sequence of asset prices by age n {P,'} while equations (7) allow us to reverse the
process.

Equations (7) can be derived from elementary economic considerations. Consider the first
equation in (7). Think of a production unit as purchasing a unit of the new capital asset at
the beginning of period t at a cost of P,' and then using the asset throughout period t.
However, at the end of period t, the producer will have a depreciated asset that is
expected to be worth (1+i') P,". Since this offset to the initial cost of the asset will only be
received at the end of period t, it must be divided by (1+r') to express the benefit in terms
of beginning of period t dollars. Thus the expected net cost of using the new asset for
period t" is P,' = [(1+1)/(1+1)] P,".

The above equations assume that the actual or implicit period t rental payments f,' for
assets of different ages n are made at the beginning of period t. It is sometimes
convenient to assume that the rental payments are made at the end of each accounting
period. Thus we define the end of period t rental price or user cost for an asset that is n
periods old at the beginning of period t, u,’, in terms of the corresponding beginning of
period t rental price f,' as follows:

®u,'=1+)f' ; n=0,1,2,...

"' Note that we are implicitly assuming that the rental is paid to the owner at the beginning of period t.

2 Another way of interpreting say the first equation in (6) runs as follows: the purchase cost of a new asset
P, less the rental f,' (which is paid immediately at the beginning of period t) can be regarded as an
investment, which must earn the going rate of return r'. Thus we must have [P, — f,'](1+r') = (1+i)P," which
is the (expected) value of the asset at the end of period t. This line of reasoning can be traced back to
Walras (1954; 267).

" This explains why the rental prices f ,' are sometimes called user costs. This derivation of a user cost was
used by Diewert (1974; 504), (1980; 472-473), (1992a; 194) and by Hulten (1996; 155).



Thus if the rental payment is made at the end of the period instead of the beginning, then
the beginning of the period rental f,' must be escalated by the interest rate factor (1+r') in
order to obtain the end of the period user cost u,,".

Using equations (8) and the second set of equations in (7), it can readily be shown that
the sequence of end of period t user costs {u,'} can be defined in terms of the period t
sequence of asset prices by age {P,'} as follows:

9) u, = P, (1+1) — (1+i') P;'
u, =P, (1+1) - (1+i') P,
W' =P, (1+1) — (1+i) Py

u, =P, (1+1) = (1+) Py, 's ...

Equations (9) can also be given a direct economic interpretation. Consider the following
explanation for the user cost for a new asset, u,'. At the end of period t, the business unit
expects to have an asset worth (1+i') P,'. Offsetting this benefit is the beginning of the
period asset purchase cost, P,. However, in addition to this cost, the business must
charge itself either the explicit interest cost that occurs if money is borrowed to purchase
the asset or the implicit opportunity cost of the equity capital that is tied up in the
purchase. Thus offsetting the end of the period benefit (1+i') P,' is the initial purchase
cost and opportunity interest cost of the asset purchase, P,' (1+r'), leading to a end of
period t net cost of P, (1+r') — (1+i) P,' or u,".

It is interesting to note that in both the accounting and financial management literature of
the past century, there was a reluctance to treat the opportunity cost of equity capital tied
up in capital inputs as a genuine cost of production.'" However, more recently, there is an
acceptance of an imputed interest charge for equity capital as a genuine cost of
production.”

In the following section, we will relate the asset price profiles {P,'} and the user cost
profiles {u,'} to depreciation profiles. However, before turning to the subject of
depreciation, it is important to stress that the analysis presented in this section is based on
a number of restrictive assumptions, particularly on future price expectations. Moreover,
we have not explained how these asset price expectations are formed and we have not
explained how the period t nominal interest rate is to be estimated (we will address these
topics in section 7 below). We have not explained what should be done if the sequence
of second hand asset prices {P,'} is not available and the sequences of vintage rental
prices or user costs, {f,'} or {u,'}, are also not available (we will address this problem in
later sections as well). We have also assumed that asset values and user costs are
independent of how intensively the assets are used. Finally, we have not modeled
uncertainty (about future prices and the useful lives of assets) and attitudes towards risk
on the part of producers. Thus the analysis presented in this chapter is only a start on the
difficult problems associated with measuring capital input.

3. Cross Section Depreciation Profiles

Recall that in the previous section, P," was defined to be the price of an asset that was n
periods old at the beginning of period t. Generally, the decline in asset value as we go

14 This literature is reviewed in Diewert and Fox (1999; 271-274).
"% Stern Stewart & Co. has popularized the idea of charging for the opportunity cost of equity capital and
has called the resulting income concept, EVA, Economic Value Added.



from one vintage to the next oldest is called depreciation. More precisely, we define the
cross section depreciation D,' '° of an asset that is n periods old at the beginning of period
t as

(10)D,'=P'~P.' :n=0,12,...

Thus D,' is the value of an asset that is n periods old at the beginning of period t, P,
minus the value of an asset that is n+1 periods old at the beginning of period t, P,,,".

Obviously, given the sequence of period t cross section asset prices {P,'}, we can use
equations (10) to determine the period t sequence of declines in asset values by age,
{D,'}. Conversely, given the period t cross section depreciation sequence or profile,
{D,'}, we can determine the period t asset prices by age n by adding up amounts of
depreciation:

(11)P, =D, +D,'+ D, + ...
P'=D,+D, +D; +...

“.l t t t
P'=D,/+D,,,+D,, +...

Rather than working with first differences of asset prices by age, it is more convenient to
reparameterize the pattern of cross section depreciation by defining the period t
depreciation rate 9, for an asset that is n periods old at the start of period t as follows:
(12)9,'=1-[P,,'/P1=D, /P,}; n=0,1,2,...

In the above definitions, we require n to be such that P,' is positive."’

Obviously, given the sequence of period t asset prices by age n, {P,'}, we can use
equations (12) to determine the period t sequence of cross section depreciation rates,
{8,'}. Conversely, given the cross section sequence of period t depreciation rates, {0,'},
as well as the price of a new asset in period t, P,, we can determine the period t asset
prices by age as follows:

(13)P,'=(1 -9,) Py
le = (l - 60[)(1 - 61l) Pol

P'=(1-98,)1-98...(1=-9,.)P,; ...
The interpretation of equations (13) is straightforward. At the beginning of period t, a

new capital good is worth P,". An asset of the same type but which is one period older at
the beginning of period t is less valuable by the amount of depreciation §, P, and hence

' This terminology is due to Hill (1999) who distinguished the decline in second hand asset values due to
aging (cross section depreciation) from the decline in an asset value over a period of time (time series
depreciation). Triplett (1996; 98-99) uses the cross section definition of depreciation (calling it
deterioration) and shows that it is equal to the concept of capital consumption in the national accounts but
he does this under the assumption of no expected real asset price change. We will examine the relationship
of cross section to time series depreciation in section 5 below.

" This definition of depreciation dates back to Hicks (1939 ;176) at least and was used extensively by
Edwards and Bell (1961; 175), Hulten and Wykoff (1981a) (1981b) (who call it deterioration), Diewert
(1974; 504) and Hulten (1990; 128) (1996; 155).



is worth (1 - §,) P,, which is equal to P,". An asset which is two periods old at the
beginning of period t is less valuable than a one period old asset by the amount of
depreciation 9,' P,' and hence is worth P,' = (1 - §,") P, which is equal to (1 — 8,)(1 - d,)
P, using the first equation in (13) and so on. Suppose L - 1 is the first integer which is
such that d, ' is equal to one. Then P,' equals zero for all n = L; i.e., at the end of L
periods of use, the asset no longer has a positive rental value. If L = 1, then a new asset
of this type delivers all of its services in the first period of use and the asset is in fact a
nondurable asset.

Now substitute equations (12) into equations (9) in order to obtain the following formulae
for the sequence of the end of the period t user costs by age n, {u,'}, in terms of the price
of a new asset at the beginning of period t, P,,, and the sequence of cross section
depreciation rates, {0,'}:

(14) uy' = [(1+4r) = A+ - 8))] Py’
u' = (1 =) (1+r) - (A+H(1 - 8,)] Py’

W= (1=8,... (1=8_ Y1+ = (1+)(1 = 8.] Py ...

Thus given P,' (the beginning of period t price of a new asset), i' (the nominal rate of new
asset price change that is expected at the beginning of period t), r' (the one period
nominal interest rate that the business unit faces at the beginning of period t) and given
the sequence of cross section vintage depreciation rates prevailing at the beginning of
period t (the §,°), then we can use equations (14) to calculate the sequence of the end of
the period user costs for period t, the u,'. Of course, given the u,', we can use equations
(8) to calculate the beginning of the period user costs (the f.') and then use the f, to
calculate the sequence of asset prices by age P,‘ using equations (5) and finally, given the
P, we can use equations (12) in order to calculate the sequence of depreciation rates for
assets of age n at the beginning of period t, the 8,". Thus given any one of these
sequences or profiles, all of the other sequences are completely determined. This means
that assumptions about depreciation rates, the pattern of user costs by age of asset or the
pattern of asset prices by age of asset cannot be made independently of each other."

It is useful to look more closely at the first equation in (14), which expresses the user cost
or rental price of a new asset at the end of period t, u,', in terms of the depreciation rate
d,, the one period nominal interest rate ', the new asset inflation rate i' that is expected to
prevail at the beginning of period t and the beginning of period t price for a new asset, P,

(15) uy' = [(1+1) = A+ = d )] Py = [ = i' + (1+ 1), Py".

Thus the user cost of a new asset u,' that is purchased at the beginning of period t (and the
actual or imputed rental payment is made at the end of the period) is equal to r' — i' (a
nominal interest rate minus an asset inflation rate which can be loosely interpreted'® as a
real interest rate) times the initial asset cost P,' plus (1+ i%)d,P,' which is depreciation on

"® This point was first made explicitly by Jorgenson and Griliches (1967; 257); see also Jorgenson and
Griliches (1972; 81-87). Much of the above algebra for switching from one method of representing vintage
capital inputs to another was first developed by Christensen and Jorgenson (1969; 302-305) (1973) for the
geometrically declining depreciation model. The general framework for an internally consistent treatment
of capital services and capital stocks in a set of vintage accounts was set out by Jorgenson (1989) and
Hulten (1990; 127-129) (1996; 152-160).

' We will provide a more precise definition of a real interest rate later.
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the asset at beginning of the period prices, 8,'P,’, times one plus the expected rate of asset
price change, (1+1).” If we further assume that the expected rate of asset price change i'
is 0, then (15) further simplifies to:

(16) u,' = [r' + 8,1 P,".

Under these assumptions, the user cost of a new asset is equal to the interest rate plus the
depreciation rate times the initial purchase price.” This is essentially the user cost
formula that was obtained by Walras (1954; 268-269) in 1874.

However, the basic idea that a durable input should be charged a period price that is equal
to a depreciation term plus a term that would cover the cost of financial capital goes back
to Babbage (1835; 287) and others™.

Babbage did not proceed further with the user cost idea. Walras seems to have been the
first economist who formalized the idea of a user cost into a mathematical formula.
However, the early industrial engineering literature also independently came up with the
user cost idea; Church (1901; 734 and 907-908) in particular gave a very modern
exposition of the ingredients needed to construct user costs or machine rents.

Church was well aware of the importance of determining the “right” rate to be charged
for the use of a machine in a multiproduct enterprise. This information is required not
only to price products appropriately but to determine whether an enterprise should make
or purchase a particular commodity. Babbage (1835; 203) and Canning (1929; 259-260)
were also aware of the importance of determining the right machine rate charge:”

The above equations relating asset prices by age n, P,’, beginning of the period user costs
by age n, f,', end of the period user costs, u,', and the (cross section) depreciation rates 9,
are the fundamental ones that we will specialize in subsequent sections in order to
measure both wealth capital stocks and capital services under conditions of inflation. In

 This formula was obtained by Christensen and Jorgenson (1969; 302) for the geometric model of
depreciation but it is valid for any depreciation model. Griliches (1963; 120) also came very close to
deriving this formula in words: “In a perfectly competitive world the annual rent of a machine would equal
the marginal product of its services. The rent itself would be determined by the interest costs on the
investment, the deterioration in the future productivity of the machine due to current use, and the expected
change in the price of the machine (obsolescence).”

2! Using equations (13) and (14) and the assumption that the asset inflation rate i ‘=0, it can be shown that
the user cost of an asset that is n periods old at the start of period t can be written as u,' = (r' + 8,")P,' where
P,' is the beginning of period t second hand market price for the asset.

22 Solomons (1968; 9-17) indicates that interest was regarded as a cost for a durable input in much of the
nineteenth century accounting literature. The influential book by Garcke and Fells (1893) changed this.

3 Under moderate inflation, the difficulties with traditional cost accounting based on historical cost and no
proper allowance for the opportunity of capital, the proper pricing of products becomes very difficult.
Diewert and Fox (1999; 271-274) argued that this factor contributed to the great productivity slowdown
that started around 1973 and persisted to the early 1990’s. The traditional method of cost accounting can
be traced back to a book first published in 1887 by the English accountants, Garcke and Fells (1893; 70-
71). Their rather crude approach to cost accounting should be compared to the masterful analysis of
Church! Garcke and Fells (1893; 72-73) endorsed the idea that deprecation was an admissible item of cost
that should be allocated in proportion to the prime cost (i.e., labour and materials cost) of manufacturing an
article but they explicitly ruled out interest as a cost. The aversion of accountants to include interest as a
cost can be traced back to the influence of Garcke and Fells.
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the following section, we shall consider several options that could be used in order to
determine empirically the interest rates r' and the expected asset rates of price change i'.

4. The Empirical Determination of Interest Rates and Rates of Asset Price Change

We consider initially three broad approaches® to the determination of the nominal
interest rate r' that is to be used to discount future period value flows by the business units
in the aggregate under consideration:

* Use the ex post rate of return that will just make the sum of the user costs exhaust the
gross operating surplus of the production sectors for the aggregate under
consideration.

* Use an aggregate of nominal interest rates that the production sectors in the
aggregate might be facing at the beginning of each period.

* Take a fixed real interest rate and add to it actual ex post consumer price inflation or
anticipated consumer price inflation.

The first approach was used for the entire private production sector of the economy by
Jorgenson and Griliches (1967; 267) and for various sectors of the economy by
Christensen and Jorgenson (1969; 307). It is also widely used by statistical agencies. It
has the advantage that the value of output for the sector will exactly equal the value of
input in a consistent accounting framework. It has the disadvantages that it is subject to
measurement error and it is an ex post rate of return which may not reflect the economic
conditions facing producers at the beginning of the period. This approach (incorrectly in
our view) transforms pure profits (or losses) into a change in the opportunity cost of
financial capital.

The second approach suffers from aggregation problems. There are many interest rates in
an economy at the beginning of an accounting period and the problem of finding the
“right” aggregate of these rates is not a trivial one.

The third approach works as follows. Let the consumer price index for the economy at
the beginning of period t be ¢' say. Then the ex post general consumer inflation rate for
period t is p' defined as:

(I7) 1+p'=c'/c.

Let the production units under consideration face the real interest rate r*'. Then by the
Fisher (1896) effect, the relevant nominal interest rate that the producers face should be
approximately equal to r' defined as follows:

(18) ' = (14r¥)(1+p") —1.

The Australian Bureau of Statistics assumes that producers face a real interest rate of 4
per cent. This is consistent with long run observed economy wide real rates of return for
most OECD countries which fall in the 3 to 5 per cent range. We shall choose this third
method for defining nominal interest rates and choose the real rate of return to be 4 % per

# Other methods for determining the appropriate interest rates that should be inserted into user cost

formulae are discussed by Harper, Berndt and Wood (1989) and in Chapter 5 of Schreyer (2001). Harper,
Berndt and Wood (1989) evaluate empirically 5 alternative rental price formulae using geometric
depreciation but making different assumptions about the interest rate and the treatment of asset price
change. They show that the choice of formula matters (as we will later).
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annum; i.e., we assume that the nominal rate r' is defined by (18) with the real rate
defined by

(19) r*' = .04
assuming that the accounting period chosen is a year.”

We turn now to the determination of the asset expected rates of price change®, thei',
which appear in most of the formulae derived in the preceding sections of this chapter.
There are three broad approaches that can be used in this context:

* Use actual ex post rates of price change for a new asset over each period.

* Assume that each asset rate of price change is equal to the general inflation rate for
each period.

* Estimate anticipated rates of asset price change for each period.

In what follows, we will compute cross sectional user costs using Canadian data on
investments for two broad classes of assets (nonresidential construction and machinery
and equipment) for 4 different sets of assumptions about depreciation or the relative
efficiency of assets by age. We will undertake these computations in an inflationary
environment and make each of the three sets of assumptions about the asset inflation rates
listed above for each of the 4 depreciation models, giving 12 models in all that will be
compared. If the various models give very different results, this indicates that the
statistical agency computing capital stocks and service flows under inflation must choose
its preferred model with some care.

When we assume that the rate of price change for each asset is equal to the general
inflation rate p' defined by (17), the equations presented earlier simplify. Thus if we
replace 1+i' by 1+p' and 1+1' by (1+r*)(14p"), equations (5), which relate the period t
asset prices by age n P, to the rental prices f,’, become:

(20) P, = £, + [1/(1+r5)] £, + [+ £, + [+ £ + ...
P! = £, + [1/(1+9)] £ + [1/(1+) ] £ + [+ £, + ...

P o= 4 [1/(14r)] £ + [P £ + [P £ .
Note that only the constant real interest rate r* appears in these equations.

If we replace 1+i' by 1+p' and 1+r' by (1+r*)(1+p"), equations (14), which relate the end
of period user costs u,' to the depreciation rates 0,', become:

21 uy' = (+pH[(A+r*%) = (1 = §)] Py’ = (1+pH[r* + 8,1 Py’
' = (14p)(1 = 8)[(141) = (1 = 8,)] Py' = (1+p)(1 = §)[r* + 8,1 Py’

= (1)1 = 8. (1 = 8, HI(A+r) = (1 = 8,91 Py’
= (1)1 = 8)....(1 = 8,.,) [r* + 8, Py

» If we are in a high inflation situation so that the accounting period becomes a quarter or a month, thenr ™

must be chosen to be appropriately smaller.
% These are sometimes called revaluation terms in user cost formulae.
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Now use equations (8) and 1+r' = (1+r*)(1+p‘) and substitute into (21) to obtain the
following equations, which relate the beginning of period user costs f,' to the depreciation
rates 9,

(22) £, = (1+1%) ' [r* + 8, P!
£l = (1+r%)7'(1 = 8,O[r* + 8,7 P,

F Uz (14 (1 = 8,)...(1 = &) [r* + 8. P\

Note that only the constant real interest rate r* appears in equations (22) but equations
(21) also have the general inflation rate (1+p") as a multiplicative factor.

As mentioned above, in our third class of assumptions about rates of asset price change,
we want to estimate anticipated rates of asset price change and use these estimates as our
i' in the various formulae we have exhibited. Unfortunately, there are any number of
forecasting methods that could be used to estimate the anticipated asset rates of price
change. We will take a somewhat different approach than a pure forecasting one: we will
simply smooth the observed ex post new asset rates of price change and use these
smoothed rates as our estimates of anticipated rates.”’” A similar forecasting problem
arises when we use ex post actual consumer price index inflation rates (recall (17) and
(18) above) in order to generate anticipated general inflation rates. Thus in our third set
of models, we will use both smoothed asset inflation rates and smoothed general inflation
rates as our estimates for anticipated rates. In our first class of models, we will use actual
ex post rates in both cases.

Before we proceed to consider our four specific depreciation models, we briefly consider
in the next section a topic of some current interest: namely the interaction of (foreseen)
obsolescence and depreciation. We also discuss cross section versus time series
depreciation.

5. Obsolescence and Depreciation

We begin this section with a definition of the time series depreciation of an asset. Define
the ex post time series depreciation of an asset that is n periods old at the beginning of
period t, E, to be its second hand market price at the beginning of period t, P,', less the
price of an asset that is one period older at the beginning of period t+1, P,,,"*"; i.e.,

23)E,'=P'-P,."" :n=0,1,2,...

Definitions (23) should be contrasted with our earlier definitions (10), which defined the
cross section amounts of depreciation for the same assets at the beginning of period t, D,"
= Pnl - Pn+ll'

We can now explain why we preferred to work with the cross section definition of
depreciation, (10), over the time series definition, (23). The problem with (23) is that
time series depreciation captures the effects of changes in two things: changes in time

?7 Unfortunately, different analysts may choose different smoothing methods so there may be a problem of

a lack of reproducibility in our estimating procedures. Harper, Berndt and Wood (1989; 351) note that the
use of time series techniques to smooth ex post asset inflation rates and the use of such estimates as
anticipated price change dates back to Epstein (1977).
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(this is the change in t to t+1)* and changes in the age of the asset (this is the change in n
to n+1).” Thus time series depreciation aggregates together two effects: the asset
specific price change that occurred between time t and time t+1 (asset revaluation due to
general inflation and asset specific price change) and the effects of asset aging
(depreciation). Thus the time series definition of depreciation combines together two
distinct effects.

The above definition of ex post time series depreciation is the original definition of
depreciation and it extends back to the very early beginnings of accounting theory.”

However, what has to be kept in mind that these early authors who used the concept of
time series depreciation were implicitly or explicitly assuming that prices were stable
across time, in which case, time series and cross section depreciation coincide.

P. Hill (2000; 6) and Hill and Hill (2003; 617)*' recently argued that a form of time series
depreciation that included expected obsolescence was to be preferred over cross section
depreciation for national accounts purposes. Since the depreciation rates d,' defined by
(12) are cross section depreciation rates and they play a key role in the beginning and end
of period t user costs f," and u,' defined by (14), (21) and (22), it is necessary to clarify
their use in the context of Hill’s point that these depreciation rates should not be used to
measure depreciation in the national accounts.

Our response to the Hill critique is twofold:

* Cross section depreciation rates as we have defined them are affected by anticipated
obsolescence in principle but

* Hill is correct in arguing that cross section depreciation will not generally equal ex
post time series depreciation or anticipated time series depreciation.

Before discussing the above two points in detail, it is necessary to discuss the concept of
obsolescence in a bit more detail. Wykoff (2004), in his discussion of this chapter, takes
a narrow “technological” definition of obsolescence. In his view, an asset can only
become obsolete if a new model of the asset becomes available which can deliver at least
the service flow of the old asset at a lower price. In his view, if there is no technological
change embodied in the new asset, then by definition, there is no obsolescence.
However, it is possible to define obsolescence more broadly and include the effects of
changes in the economy that reduce the demand for the asset’s services to such an extent
that its real price falls.”> In what follows, we will use the second broader concept of

% This change could be captured by either P,' = P,"*' or P,,,' - P,.,,"*".

¥ This change could be captured by either P,' - P,,,' or P,"*' = P, ,,**'

% See for example Matheson (1910; 35) and Hotelling (1925; 341).

3! We agree in general with P. Hill (2000) and Hill and Hill (2003) that expected obsolescence should be
added to cross sectional depreciation to form an overall depreciation charge. However, Hill and Hill
assumed that there was no general inflation in their exposition so some clarification is needed to deal with
this complication.

32 This broader definition goes back to Church at least: “Even though a machine is used fairly and

uniformly as contemplated when the rate of depreciation was fixed there is another influence that may
shorten its period of usefulness in an unexpected way. The progress of the technical art in which it is
employed may develop more efficient machines for doing the same work, so that it becomes advisable to
scrap it long before it is worn out. The machine becomes obsolete and the loss of value from this cause is
called ‘obsolescence’. Again, unless the machine is of a very generalized type, such as an engineer’s lathe,
another type of misfortune may overtake it. If it is a machine that can only be used for certain definite
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obsolescence. One more point must be considered at this point. If there is technological
obsolescence due to a new and improved model of the asset being made available, then
we assume that the price of the new model has been (somehow) quality adjusted so that
the quality adjusted price is measured in quantity units that are comparable to the older
models.

Now consider the first dot point above. Provisionally, we define anticipated
obsolescence as a situation where the expected new asset rate of price change (adjusted
for quality change) i' is negative.” For example, everyone anticipates that the quality
adjusted price for a new computer next quarter will be considerably lower than it is this
quarter.” Now turn back to equations (5) above, which define the profile of vintage asset
prices P, at the start of period t. It is clear that the negative i' plays a role in defining the
sequence of vintage asset prices as does the sequence of vintage rental prices that is
observed at the beginning of period t, the . Thus in this sense, cross sectional
depreciation rates certainly embody assumptions about anticipated obsolescence.

Thus for an asset that has a finite life, as we move down the rows of equations (5), the
number of discounted rental terms decline and hence asset value declines, which is
Griliches’ (1963; 119) concept of exhaustion. If the cross sectional rental prices are
monotonically declining (due to their declining efficiency), then as we move down the
rows of equations (5), the higher rental terms are being dropped one by one so that the
asset values will also decline from this factor, which is Griliches’ (1963; 119) concept of
deterioration. Finally, a negative anticipated asset inflation rate will cause all future
period rentals to be discounted more heavily, which could be interpreted as Griliches’
(1963; 119) concept of obsolescence.” Thus all of these explanatory factors are
imbedded in equations (5).

Now consider the second dot point: that cross section depreciation is not really adequate
to measure time series depreciation in some sense to be determined.

kinds of work or some special article, as for example many of the machines used in automobile and bicycle
manufacture, it may happen that changes in demand, or in style, make the manufacture of that special
article no longer profitable. In this case, unless the machine can be transformed for another use, it is a dead
loss.” A.H. Church (1917; 192-193).

3 Paul Schreyer and Peter Hill noted a problem with this provisional definition of anticipated obsolescence
as a negative value of the expected asset inflation rate: it will not work in a high inflation environment. In
a high inflation environment, the nominal asset inflation rate i' will generally be positive but we will require
this nominal rate to be less than general inflation in order to have anticipated obsolescence. Thus our final
definition of anticipated obsolescence is that the real asset inflation rate i*' defined later by (28) be
negative; see the discussion just above equation (30) below.

* Our analysis assumes that the various vintages of capital are adjusted for quality change (if any occurs) as
they come on the market. In terms of our Canadian empirical example to follow, we are assuming that
Statistics Canada correctly adjusted the published investment price deflators for machinery and equipment
and nonresidential construction for quality change. We also need to assume that the form of quality change
affects all future efficiency factors (i.e., the f,) in a proportional manner. This is obviously only a rough
approximation to reality: technical change may increase the durability of a capital input or it may decrease
the amount of maintenance or fuel that is required to operate the asset. These changes can lead to
nonproportional changes in the f,".

% However, it is more likely that what Griliches had in mind was Hill’s second point; i.e., that time series
depreciation will be larger than cross section depreciation in a situation where i*' is negative.
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Define the ex ante time series depreciation of an asset that is n periods old at the
beginning of period t, A,, to be its second hand market price at the beginning of period t,
P, less the anticipated price of an asset that is one period older at the beginning of
period t+1, (1+i) P,,,; i.e.,

Q24 A, =P, - (1+) P, :n=0,12,...

Thus anticipated time series depreciation for an asset that is t periods old at the start of
period t, A, differs from the corresponding cross section depreciation defined by (10),
D,'=P,' - P, in that the anticipated new asset rate of price change, i, is missing from
D,. However, note that the two forms of depreciation will coincide if the expected asset
rate of price change i' is zero.

We can use equations (12) and (13) in order to define the ex ante depreciation amounts
A,' in terms of the cross section depreciation rates d,. Thus using definitions (24), we
have:

(25) A =P, — (14i) P, n=0,12,...
=P, - (1+i)(1-8,) P, using (12)

[1 - (1+i)(1-5,)] P,

= (1=8,9(1-8,) ... (1-8,_H[1 - (1+i')(1-8,9] P, using (13)

= (1-9,)(1-9,) ... (1-9,_ [ 8, = i'(1-8,)] Py’

We can compare the above sequence of ex ante time series depreciation amounts A" with
the corresponding sequence of cross section depreciation amounts:

(26)D.'=P'~ P, n=0,12,...
=P '-(1-3,)P,' using (12)
=[1-(1-5,9] P,
= (1=8,)(1=8,Y ... (1=8,_ Y[ 8,7 P, using (13).

Of course, if the anticipated rate of asset price change i' is zero, then (25) and (26)
coincide and ex ante time series depreciation equals cross section depreciation. If we are
in the provisional expected obsolescence case with i' negative, then it can be seen
comparing (25) and (26) that A,' > D, for all n such that D,' > 0; i.e., if i' is negative (and
0 <9, < 1), then ex ante time series depreciation exceeds cross section depreciation over
all in use vintages of the asset. If i' is positive so that the rental price of each vintage is
expected to rise in the future , then ex ante time series depreciation is less than the
corresponding cross section depreciation for all assets that have a positive price at the end
of period t. This corresponds to the usual result in the vintage user cost literature where
capital gains or an ex post price increase for a new asset leads to a negative term in the
user cost formula (plus a revaluation of the cross section depreciation rate). Here we are
restricting ourselves to anticipated capital gains rather than the actual ex post capital
gains and we are focusing on depreciation concepts rather than the full user cost.

This is not quite the end of the story in the high inflation context. National income
accountants often readjust asset values at either the beginning or end of the accounting
period to take into account general price level change. At the same time, they also want
to decompose nominal interest payments into a real interest component and another
component that compensates lenders for general price change. So r*
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Recall (17), which defined the general period t inflation rate p' and (18), which related
the period t nominal interest rate r' to the real rate r*' and the inflation rate p'. We rewrite
(18) as follows:

Q7)1+ = (1+)/(1 +p).

In a similar manner, we define the period t anticipated rate of real asset price change i*'
as follows:

(28) 1+ i* = (1 +1)/(1 + p).

Recall definition (24), which defined the ex ante time series depreciation of an asset that
is n periods old at the beginning of period t, A,". The first term in this definition reflects
the price level at the beginning of period t while the second term in this definition reflects
the price level at the end of period t. We now express the second term in terms of the
beginning of period t price level. Thus we define the ex ante real time series
depreciation of an asset that is n periods old at the beginning of period t, I, as follows:

(29)T1,'=P,' - (1+i") P, Y/(1+p") n=0,12....
=P,' - (1+i)(1-9,) P, /(1+p") using (12)
= [(1+p) = (A+*)(1+p")(1-5,)] P, /(1+p°) using (28)

= (1-8,)(1=8," ... (1=8,_H[1 = (1+i*)(1-8,)] P,' using (13)
= (1-9,)(1-9,) ... (19, H[ 8, - i*'(1-3,)] P".

The ex ante real time series depreciation amount IT,' defined by (29) can be compared to
its cross section counterpart D,', defined by (25) above. Of course, if the real anticipated
asset inflation rate i*' is zero, then (29) and (25) coincide and real ex ante time series
depreciation equals cross section depreciation.

We are now in a position to provide a more satisfactory definition of expected
obsolescence, particularly in the context of high inflation. We now define expected
obsolescence to be the situation where the real rate of asset price change i*' is negative.
If this real rate is negative, then it can be seen comparing (29) and (26) that

B30)I1'>D,"  forall n such that D, > 0;

i.e., real anticipated time series depreciation exceeds the corresponding cross section
depreciation provided that i*' is negative.

Thus the general user cost formulae that we have developed from the vintage accounts
point of view can be reconciled to reflect the point of view of national income
accountants. We agree with Hill’s point of view that cross section depreciation is not
really adequate to measure time series depreciation as national income accountants have
defined it since Pigou (1935; 240-241).

Pigou (1924) in an earlier work had a more complete discussion of the obsolescence
problem and the problems involved in defining time series depreciation in an inflationary
environment. Pigou (1924; 34-35) first pointed out that the national dividend or net
annual income (or in modern terms, real net output) should subtract depreciation or
capital consumption. Pigou (1924; 39-41) then went on to discuss the roles of
obsolescence and general price change in measuring depreciation. Pigou was responsible
for many of the conventions of national income accounting that persist down to the
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present day. He essentially argued that (unanticipated) capital gains or losses be
excluded from income and that the effects of general price level change be excluded from
estimates of depreciation. He also argued for the inclusion of (foreseen) obsolescence in
depreciation. Unfortunately, he did not spell out exactly how all of this could be done in
the accounts. Our algebra above can be regarded as an attempt to formalize these
Pigovian complications.

It should be noted that the early industrial engineering literature also stressed that the
possibility of obsolescence meant that depreciation allowances should be larger than
those implied by mere wear and tear; see Babbage (1835; 285), Matheson (1910; 39-40)
and Church (1917; 192-193). Both Matheson and Church noted that obsolescence could
arise not only from new inventions but also from shifts in demand.

We will end this section by pointing out another important use for the concept of real
anticipated time series depreciation. However, before doing this, it is useful to rewrite
equations (5), which define the beginning of period t asset prices by age n, P, in terms of
the beginning of period t rental prices f,’, and equations (7), which define the user costs f,'
in terms of the asset prices P,', using definitions (27) and (28), which define the period t
real interest rate r*' and expected asset inflation rate i*' respectively in terms of the
corresponding nominal rates r' and i' and the general inflation rate p'. Substituting (27)
and (28) into (5) yields the following system of equations:

(B1) P! = £, 4+ [(1+1*)/(14+*9] £," + [(1+7)/(14+r%Y ] £ + [(1+*)/ A+ £+ ...
P =f" + [(1+7%)/(14+r%)] £ + [(1+*)/ (14 £+ [+ (145 £, + ...

Pl = £ 4+ [(LHF(1+r%)] £, + [+ £+ [+ AT £+ .
Similarly, substituting (27) and (28) into (7) yields the following system of equations:

(32) £, = Py = [(A+*¥)/(1+r%)] P,' = (1+r%) ™" [P, (1+r*") — (1+*) P,']
f,'=P,' = [A+*)/(1+r%)] P, = (1+r%) " [P, (1+r*) — (1+*) P, ']

Flo P (A=) P = (14 [P (140 — (145 P 5 ...

Note that the nominal interest and inflation rates have entirely disappeared from the
above equations. In particular, the beginning of the period user costs f,' can be defined in
terms or real variables using equations (32) if this is desired. On the other hand, entirely
equivalent formulae for the cross section user costs can be obtained using the initial set of
equations (7), which used only nominal variables. Which set of equations is used in
practice can be left up to the judgment of the statistical agency or the user.*® The point is
that the careful and consistent use of discounting should eliminate the effects of general
inflation from our price variables; discounting makes comparable cash flows received or
paid out at different points of time.

Recall definition (29), which defined I1,' as the ex ante real time series depreciation of an
asset that is n periods old at the beginning of period t. It is convenient to convert this
amount of depreciation into a percentage of the initial price of the asset at the beginning

% In particular, it is not necessary for the statistical agency to convert all nominal prices into real prices as a
preliminary step before “real” user costs are calculated. The above algebra shows that our nominal user
costs f,' can also be interpreted as “real” user costs that are expressed in terms of the value of money
prevailing at the beginning of period t.
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of period t, P,". Thus we define the ex ante time series depreciation rate for an asset that
is n periods old at the start of period t, m,, as follows:”’

(B33) n'=11'/P' :n=0,1,2,...
=[P, = (1+i") P,,,/(1+p")] / P," using (29)
=[P.' = (1+i')(1-0,") P.' /(1+p")] / P,! using (12)
=[1 = (1+i*(1-0,9] using (28).

Now substitute definition (12) for the cross section depreciation rate d,' into the nth
equation of (32) and we obtain the following expression for the beginning of period t user
cost of an asset that is n periods old at the start of period t:

(B4 f'= (14r%Y! [P, (14r*) — (14i*) P_,,'] n=0,1,2,...
= (14 [P (140%) — (147%9(1=0.% P.] using (12)
= (147" [(141r%) - (1+i*H(1-8,H1 P,
= (14" [P + 7, P, using (33).

Thus the period t vintage user cost for an asset that is n periods old at the start of period t,
f ', can be decomposed into the sum of two terms. Ignoring the discount factor, (141%™,
the first term is r*' P, which represents the real interest cost of the financial capital that
is tied up in the asset, and the second term is m,' P, = I1, which represents a concept of
national accounts depreciation.

The last line of (34) is important if at some stage statistical agencies decide to switch
from measures of gross domestic product to measures of net domestic product. If this
change occurs, then the user cost for each age n of capital, f,', must be split up into two
terms as in (34). The first term, (1+r*)™" r*' P ' times the number of units of that type of
capital in use, could remain as a primary input charge while the second term, (1+r*)™" '
P, times the number of units of that age of capital in use, (this is real national accounts
depreciation) could be treated as an intermediate input charge (similar to the present
treatment of imports). The second term would be an offset to gross investment.™

This completes our discussion of the obsolescence problem.” In the next section, we turn
our attention to the problem of aggregating across ages of the same capital good.

7 To see that there can be a very large difference between the cross section depreciation rate ," and the
corresponding ex ante time series depreciation rate ', consider the case of an asset whose vintages yield
exactly the same service for each period in perpetuity. In this case, all of the vintage asset prices P, would
be identical and the cross section depreciation rates 8,' would all be zero. Now suppose a marvelous new
invention is scheduled to come on the market next period which would effectively drive the price of this
class of assets down to zero. In this case, i*' would be — 1 and substituting this expected measure of price
change into definitions (33) shows that the ex ante time series depreciation rates would all equal one; i.e.,
under these conditions, we would have x,' = 1 and §," = 0 for all vintages n.

3 Using this methodology, we would say that capital is being maintained intact for the economy if the
value of gross investments made during the period (discounted to the beginning of the period) is equal to or
greater than the sum of the real national accounts depreciation terms over all assets. This is a maintenance
of financial capital concept as opposed to Pigou’s (1935; 235) maintenance of physical capital concept.

¥ It should be noted that our discussion of the obsolescence issue only provides an introduction to the many
thorny issues that make this area of inquiry quite controversial. For further discussion, see Oulton (1995),
Scott (1995) and Triplett (1996) and the references in these papers.
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6. Aggregation over Vintages of a Capital Good

In previous sections, we have discussed the beginning of period t stock price P, of an
asset that is n periods old and the corresponding beginning and end of period user costs,
f'and u,'. The stock prices are relevant for the construction of real wealth measures of
capital and the user costs are relevant for the construction of capital services measures.
We now address the problems involved in obtaining quantity series that will match up
with these prices.

Let the period t —1 investment in a homogeneous asset for the sector of the economy
under consideration be I”'. We assume that the starting capital stock for a new unit of
capital stock at the beginning of period t is K,' and this stock is equal to the new
investment in the asset in the previous period; i.e., we assume:

(35) K, =1"".

Essentially, we are assuming that the length of the period is short enough so that we can
neglect any contribution of investment to current production; a new capital good becomes
productive only in the period immediately following its construction. In a similar
manner, we assume that the capital stock available of an asset that is n periods old at the
start of period t is K, and this stock is equal to the gross investment in this asset class
during period t —n —1; i.e., we assume:

B6)K,'=1""; n=0,1,2,...

Given these definitions, the value of the capital stock in the given asset class for the
sector of the economy under consideration (the wealth capital stock) at the start of period
tis

BHW=P,'K,)+P'K,'+P,K," + ...
=P, I""+P'I?+P, I+ ...  using (36).

Turning now to the capital services quantity, we assume that the quantity of services that
an asset of a particular age at a point in time is proportional (or more precisely, is equal)
to the corresponding stock. Thus we assume that the quantity of services provided in
period t by a unit of the capital stock that is n periods old at the start of period t is K
defined by (36) above. Given these definitions, the value of capital services for all
vintages of asset in the given asset class for the sector of the economy under
consideration (the productive services capital stock) during period t using the end of
period user costs u,' defined by equations (8) above is

38)S'=u, K, +u,'K,'+u, K, + ...
=u, I7 +u 77+ u, 7+ .. using (36).

Now we are faced with the problem of decomposing the value aggregates W' and S'
defined by (37) and (38) into separate price and quantity components. If we assume that
each new unit of capital lasts only a finite number of periods, L say, then we can solve
this value decomposition problem using normal index number theory. Thus define the
period t stock price and quantity vectors, P* and K' respectively, as follows:

(39 P'=[P,P,....P. ] ; K'=[K, K .. K] = [ 2. 1 5 t=0,1,....T.
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Fixed base or chain indexes may be used to decompose value ratios into price change and
quantity change components. In the empirical work which follows, we have used the
chain principle.* Thus the value of the capital stock in period t, W °, relative to its value
in the preceding period, W', has the following index number decomposition:

40) W'/ W' =pPP"' P.K"' K QP P K" KY); t=12,..T
where P and Q are bilateral price and quantity indexes respectively.

In a similar manner, we define the period ¢ end of the period user cost price and quantity
vectors, u' and K' respectively, as follows:

@Ahu'=[uut.. o K= KK KT = 1002 I t=0,1,...T.

We ask that the value of capital services in period t, S', relative to its value in the
preceding period, S, has the following index number decomposition:

42) S/ S =P u , K" K Qutu . K" KY; t=12,....T
where again P and Q are bilateral price and quantity indexes respectively.

There is now the problem of choosing the functional form for either the price index P or
the quantity index Q.*' In the empirical work that follows, we used the Fisher (1922)
ideal price and quantity indexes. These indexes appear to be “best” from the axiomatic
viewpoint* and can also be given strong economic justifications.*

It should be noted that our use of an index number formula to aggregate both stocks and
services by age is more general than the usual aggregation procedures, which essentially
assume that the different vintages of the same capital good are perfectly substitutable so
that linear aggregation techniques can be used.* However, as we shall see in subsequent
sections, the more general mode of aggregation suggested here frequently reduces to the
traditional linear method of aggregation provided that the period prices by age all move
in strict proportion over time.

Many researchers and statistical agencies relax the assumption that an asset lasts only a
fixed number of periods, L say, and make assumptions about the distribution of
retirements around the average service life, L. In our empirical work that follows, for
simplicity, we will stick to the sudden death assumption; i.e., that all assets in the given
asset class are retired at age L. However, this simultaneous retirement assumption can
readily be relaxed (at the cost of much additional computational complexity) using a
methodology developed by Hulten (1990; 125), where he subdivided a vintage into
subcomponents, each of which had a different expected length of life.

“ Given smoothly trending price and quantity data, the use of chain indexes will tend to reduce the
differences between Paasche and Laspeyres indexes compared to the corresponding fixed base indexes and
so chain indexes are generally preferred; see Diewert (1978; 895) for a discussion.

4 Obviously, given one of these functional forms, we may use (40) to determine the other.

2 See Diewert (1992b; 214-223).

“ See Diewert (1976; 129-134).

* This more general form of aggregation was first suggested by Diewert and Lawrence (2000). For
descriptions of the more traditional linear method of aggregation, see Jorgenson (1989; 4) or Hulten (1990;
121-127) (1996; 152-165).
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We now have all of the pieces that are required in order to decompose the capital stock of
an asset class and the corresponding capital services into price and quantity components.
However, in order to construct price and quantity components for capital services, we
need information on the relative efficiencies f,' of the various vintages of the capital input
or equivalently, we need information on cross sectional vintage depreciation rates 9, in
order to use (42) above. The problem is that we do not have accurate information on
either of these series so in what follows, we will assume a standard asset life L and make
additional assumptions on the either the pattern of vintage efficiencies or depreciation
rates. Thus in a sense, we are following the same somewhat mechanical strategy that was
used by the early cost accountants like Daniels (1933; 303).

However, our mechanical strategy is more complex than that used by early accountants in
that we translate assumptions about the pattern of cross section depreciation rates into
implications for the pattern of cross section rental prices and asset prices, taking into
account the complications induced by discounting and expected future asset price
changes.

In the following sections, we will consider 4 different sets of assumptions and calculate
the resulting aggregate capital stocks and services using Canadian data. We illustrate
how the various depreciation models differ from each other using annual Canadian data
on two broad classes of asset:*

* machinery and equipment and
¢ nonresidential structures.

We use Canadian data on gross investment in these two asset classes (in current and in
constant dollars) because it extends back to 1926 and hence capital stocks can be formed
without making arbitrary starting value assumptions.

Our first problem is to decide on the average age of retirement for each of these asset
classes. One source is the OECD (1993) where average service lives for various asset
classes were reported for 14 OECD countries. For machinery and equipment (excluding
vehicles) used in manufacturing activities, the average life ranged from 11 years for
Japan to 26 years for the United Kingdom. For vehicles, the average service lives ranged
from 2 years for passenger cars in Sweden to 14 years in Iceland and for road freight
vehicles, the average life ranged from 3 years in Sweden to 14 years in Iceland. For
buildings and structures, the average service lives ranged from 15 years (for petroleum
and gas structures in the US) to 80 years for railway structures in Sweden. Faced with
this wide range of possible lives, we decided to follow the example of Angus Madison
(1993) and assume an average service life of 14 years for machinery and equipment and
39 years for nonresidential structures. The Canadian data that we used may be found in
Diewert (2004).

We turn now to our first efficiency and depreciation model.
7. The One Hoss Shay Model of Efficiency and Depreciation
In section 2 above, we noted that Bohm-Bawerk (1891; 342) postulated that an asset

would yield a constant level of services throughout its useful life of L years and then
collapse in a heap to yield no services thereafter. This has come to be known as the one

* More accurate models would work with more disaggregated investment series.
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hoss shay or light bulb model of depreciation. Hulten (1990; 124) noted that this pattern
of relative efficiencies has considerable intuitive appeal for many assets.

The basic assumptions of this model are that the period t efficiencies and hence cross
sectional rental prices f," are all equal to say f' for ages n that are less than L periods old
and for older ages, the efficiencies fall to zero. Thus we have:

43)f'=f forn=0,1,2,...L-1;
=0 forn=L, L+1,L+2,....

Now substitute (43) into the first equation in (5) and get the following formula® for the
rental price f' in terms of the price of a new asset at the beginning of year t, P,":

(44) £ =Po/[1 + () + () + oot (V)]

where the period t discount factor y' is defined in terms of the period t nominal interest
rate r' and the period t expected asset rate of price change i as follows:

@45)y' =1+ +1).

Now that the period t rental price f' for an unretired asset has been determined, substitute
equations (43) into equations (5) and determine the sequence of period t asset prices by
agen, P

Qo) P ' =f[1+W)+ @)V +.+(H""™" forn=0,12,..,L-1
=0 forn=L, L+1,L+2,...

Finally, use equations (8) to determine the end of period t rental prices, u,’, in terms of the
corresponding beginning of period t rental prices, f,":

@7 u, =1+ ; n=0,1.2,..

Given the asset prices defined by (46), we could use equations (12) above to determine
the corresponding cross section depreciation rates 9, We will not table these
depreciation rates since our focus is on constructing measures of the capital stock and of
the flow of services that the stocks yield.

We have data in current and constant dollars for investment in nonresidential structures
and for machinery and equipment in Canada for the years 1926 to 1999 inclusive; see
Diewert (2004) for a description of these data. As was mentioned in the previous section,
we follow the example set by Maddison (1993) and assume an average service life of 14
years for machinery and equipment and 39 years for nonresidential structures. Thus 1965
is the first year for which we will have data on all 39 types of nonresidential structures.
Now it is a straightforward matter to use the asset prices by age defined by (46) above
(where L equals 39) and apply (40) in the previous section to aggregate over the 39 types
of nonresidential capital using the Fisher (1922) ideal index number formula and form
aggregate price and quantity series for the nonresidential construction (wealth) capital
stock, Py' and Kg', for the years 1965-1999. These series, along with their annual
average (geometric) growth rates, can be found in Diewert (2004) at 5 year intervals.

“ This formula simplifies to  P,[1-(y")“]/[1—y'] provided that y'is less than 1 in magnitude. This last
restriction does not hold for our Canadian data, since for some years, i exceeds r'. However, (44) is still
valid under these conditions.
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Similarly, we use (46) above (where L equals 14) and apply (40) in the previous section
to aggregate over the 14 ages of machinery and equipment using the Fisher ideal index
number formula and form aggregate price and quantity series for the machinery and
equipment (wealth) capital stock, Py;' and K, for the years 1965-1999. These series,
along with their annual average (geometric) growth rates, can also be found in Diewert
(2004) at 5 year intervals. In this first model, we assume that producers exactly anticipate
the asset rates of price change, iy' and iy;', for nonresidential construction and for
machinery and equipment respectively; these ex post rates of price change are listed in
Diewert (2004). Having constructed the aggregate price and quantity of nonresidential
capital, Pyg' and K;' respectively, and the aggregate price and quantity of machinery and
equipment, P, and K,;;' respectively, we may again use the Fisher ideal formula and
aggregate these two series into a single aggregate price and quantity series for the wealth
stock, which we denote by P(1)' and K(1)', where the 1 indicates that this is our first
model in a grand total of 12 alternative aggregate capital stock models.

Using equations (43), (44) and (47) along with the data tabled in Diewert (2004), we can
construct the end of the period user costs for each of our 39 types of nonresidential
construction capital. Now use equation (38) to construct the service flow aggregate for
nonresidential construction for each year. Then we use (42) in the previous section
(where L equals 39) to aggregate over the 39 types of nonresidential capital using the
Fisher (1922) ideal index number formula and form the aggregate rental price for
nonresidential construction, ug', and the corresponding services aggregate, kyg', for the
years 1965-1999.” These series, along with their annual average (geometric) growth
rates, can be found in Diewert (2004) at 5 year intervals. Similarly, we use (42) above
(where L equals 14) and aggregate over the 14 ages of machinery and equipment using
the Fisher ideal index number formula and form aggregate capital services price and
quantity series, uy' and Ky, for the years 1965-1999. These series, along with their
annual average (geometric) growth rates, can also be found in Diewert (2004) at 5 year
intervals. Having constructed the aggregate price and quantity of nonresidential capital
services, Uy and kyg' respectively, and the aggregate price and quantity of machinery and
equipment services, Uy and ky;;' respectively, we may again use the Fisher ideal formula
and aggregate these two series into a single aggregate price and quantity series for capital
services, which we denote by u(1)' and k(1)', where the 1 again indicates that this is our
first model in a grand total of 12 alternative aggregate capital stock models. The various
data series will be compared graphically in section 11 below.

We turn now to our second one hoss shay depreciation model. In this model, instead of
assuming that producers correctly anticipate each year’s ex post asset inflation rates, it is
assumed that producers use the current CPI inflation rate as estimators of anticipated
asset inflation rates. This model turns out to be equivalent to the constant real interest
rate model that is frequently used by statistical agencies.” In terms of computations, we
simply replace the two ex post asset inflation rates, iyg' and iy;', by the CPI inflation rate
p' listed in Diewert (2004) and then repeat all of the computations made to implement
Model 1 above.

7 Since all of the vintage rental prices are equal, it turns out that the aggregate rental price is equal to this
common vintage rental price and the service aggregate is equal to the simple sum over the vintages. This
result is an application of Hicks’ (1939; 312-313) aggregation theorem; i.e., if all prices in the aggregate
move in strict proportion over time, then any one of these prices can be taken as the price of the aggregate.

* The nominal interest rate is still used in forming the end of the period user costs; otherwise, only real
interest rates are used in this model.
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When we compare the service prices and quantities in Model 1, the perfect foresight
model, with the corresponding service prices and quantities in Model 2, the constant real
interest rate model, a number of things stand out:

The Model 2 user costs are much less volatile (as could be expected);

The Model 1 user costs grow much more quickly;

The Model 2 levels of capital services are much higher but

The Model 1 and 2 average growth rates for capital services are very similar.

Thus the two models give very different results overall. The average rate of price increase
for the Model 2 capital services aggregate was 3.29% per year, which is much lower than
the Model 1 estimate of 4.85% per year. On the quantity side, the Model 2 flow of
nonresidential construction capital services increased from $2727 million to $11,564
million (constant 1965) Canadian dollars, for an annual average (geometric) growth rate
of 4.34% while the Model 2 flow of machinery and equipment capital services increased
from $3588 million to $34,556 million (constant 1965) Canadian dollars, for an annual
average growth rate of 6.89%. The Model 2 capital services aggregate grew at an annual
average growth rate of 5.49% compared to the Model 1 5.61% capital services annual
average growth rate.

We turn now to our third one hoss shay depreciation model. In this model (Model 3),
instead of assuming that producers correctly anticipate each year’s ex post asset inflation
rates, we assume that they can anticipate the trends in asset inflation rates. In Diewert
(2004), we describe in detail how these trends were determined. In terms of
computations, we use exactly the same program that we used to implement Model 1
except that we replace the rather volatile nominal interest rates r' by the smoothed
nominal interest rates that are listed in Diewert (2004). We also replace the two ex post
asset inflation rates, iyg' and iy, by their smoothed counterparts listed in Diewert (2004).

Comparing the numbers across the three models, there are some small differences
between the capital stocks generated by our three variants of the one hoss shay model of
depreciation but the average growth rates are virtually identical. There is more variation
across the three models in the movement of the stock prices with Model 1 giving the
highest rate of price growth for the capital aggregate (4.35% per year), followed by
Model 3 (4.17% per year) and then Model 2 (3.97% per year). The Model 1,2 and 3
aggregate prices, P(1)-P(3), and quantities of capital, K(1)-K(3) respectively, are graphed
in Figures 1-6; see the Figures in section 11 below.

The tremendous volatility of the Model 1 rental prices, u(1), will become evident from
viewing Figure 7. Thus the use of ex post asset inflation rates as ex ante or anticipated
inflation rates leads to user costs that are extremely volatile. The Model 3 aggregate user
costs, u(3), while still more volatile than the constant real interest rate user costs, u(2), are
reasonable and smooth out the fluctuations in the u(1) series. The u(2) series lies below
the other two user cost series because the constant real interest rate user costs make no
allowance for the extra depreciation that arises from the anticipated price declines that are
due to obsolescence; i.e., the u(2) series ignores the systematic real price declines in the
price of machinery and equipment. Thus while Model 2 is acceptable, we prefer Model
3, since this model includes the effects of anticipated obsolescence, whereas Model 2
does not.

Examination of Figures 4-6 in section 11 shows that all three one hoss shay models give
rise to much the same aggregate capital stocks. The constant real interest rate capital
stocks K(2) are the biggest, followed by the smoothed anticipated inflation stocks K(3)
and the fully anticipated inflation stocks K(1) are the smallest. The aggregate capital
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services graphed in Figures 10-12 show much the same pattern but with more dispersion.
The constant real interest rate aggregated capital services k(2) are the biggest, followed
by the smoothed anticipated inflation capital services k(3) and the fully anticipated
inflation capital services k(1) are the smallest.

We turn now to our second model of depreciation and efficiency.
8. The Straight Line Depreciation Model

The straight line method of depreciation is very simple in a world without price change:
one simply makes an estimate of the most probable length of life for a new asset, L
periods say, and then the original purchase price P,' is divided by L to yield an estimate
of period by period depreciation for the next L periods. In a way, this is the simplest
possible model of depreciation, just as the one hoss shay model was the simplest possible
model of efficiency decline.” The use of straight line depreciation dates back to the
1800’s at least; see Matheson (1910; 55), Garcke and Fells (1893; 98) and Canning
(1929; 265-266).

We now set out the equations which describe the straight line model of depreciation in
the general case when the anticipated asset rate of price change i' is nonzero. Assuming
that the asset has a life of L periods and that the cross sectional amounts of depreciation
D,' =P, - P, " defined by (10) above are all equal for the assets in use, then it can be
seen that the beginning of period t vintage asset prices P,' will decline linearly for L
periods and then remain at zero; i.e., the P, will satisfy the following restrictions:

(48)P ‘=P, [L -n]/L n=0,1,2,....L
=0 n=L+1L+2,...

Recall definition (12) above, which defined the cross sectional depreciation rate for an
asset that is n periods old at the beginning of period t, §,. Using (48) and the nth
equation in (13), we have:

(49) (1 =3,)(1-98,)...1 =9, H=P,' /P, =1-(n/L) forn=1,2,....L.
Using (49) for n and n+1, it can be shown that
(50) (1 -9, =[L - (n+1))/[L = n] n=0,1,2,..,L-1.

Now substitute (49) and (50) into the general user cost formula (14) in order to obtain the
period t end of the period straight line user costs, u,":>

GO =1 =98)... (1 =8,_H[(1+r) — (1+iY(1 - 8,9 P, n=0,1,2,...L -1
=1 - /L)][(1+") = (1+)(L - (n+D]/L - n])] P,

Equations (48) give us the sequence of asset prices by age that are required to calculate
the wealth capital stock while equations (51) give us the user costs by age that are
required to calculate capital services for the asset. It should be noted that if the
anticipated asset inflation rate i' is large enough compared to the nominal interest rate r',

# Tn fact, it can be verified that if the nominal interest rate ' and the nominal asset inflation rate i ' are both
zero, then the one hoss shay efficiency model will be entirely equivalent to the straight line depreciation
model.

% The user costs for n = L, L+1,1.42,... are all zero.
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then the user cost u,' can be negative. This means that the corresponding asset becomes
an output rather than an input for period t.”'

At this point, we can proceed in much the same manner as in the previous section. We
use the asset prices defined by (48) above (where L equals 39) and apply (40) in section 7
to aggregate over the 39 types of nonresidential capital using the Fisher (1922) ideal
index number formula and we form aggregate price and quantity series for the
nonresidential construction (wealth) capital stock, Pyg' and K', for the years 1965-1999.
These series, along with their annual average (geometric) growth rates, can be found in
Diewert (2004) at 5 year intervals. Similarly, we use (48) above (where L equals 14) and
apply (40) to aggregate over the 14 types of machinery and equipment using the Fisher
ideal index number formula and we form aggregate price and quantity series for the
machinery and equipment (wealth) capital stock, Py;;' and K", for the years 1965-1999.
These series, along with their annual average (geometric) growth rates, can also be found
in Diewert (2004) at 5 year intervals. In this fourth model, we assume that producers
exactly anticipate the ex post asset rates of price change, iyg' and iy, for nonresidential
construction and for machinery and equipment respectively. Having constructed the
aggregate price and quantity of nonresidential capital, Py;" and Ky;' respectively, and the
aggregate price and quantity of machinery and equipment, P, and K,;;' respectively, we
may again use the Fisher ideal formula and aggregate these two series into a single
aggr?gate price and quantity series for the wealth stock, which we denote by P(4)' and
K4).

Using equations (51) along with the data tabled in Diewert (2004), we can construct the
end of the period user costs for each of our 39 types of nonresidential construction
capital. Now use equation (38) to construct the service flow aggregate for nonresidential
construction for each year. Then we use (42) in the previous section (where L equals 39)
to aggregate over the 39 types of nonresidential capital using the Fisher (1922) ideal
index number formula and form the aggregate rental price for nonresidential construction,
Uyg,> and the corresponding services aggregate, kyy', for the years 1965-1999.* These
series, along with their annual average (geometric) growth rates, can be found in Diewert
(2004) at 5 year intervals. Similarly, we use (42) above (where L equals 14) and
aggregate over the 14 types of machinery and equipment using the Fisher ideal index
number formula and we form aggregate capital services price and quantity series, Uy'
and Ky, for the years 1965-1999. These series, along with their annual average
(geometric) growth rates, can also be found in Diewert (2004) at 5 year intervals. Having
constructed the aggregate price and quantity of nonresidential capital services, uy' and
kyr respectively, and the aggregate price and quantity of machinery and equipment
services, Uy and Ky respectively, we may again use the Fisher ideal formula and
aggregate these two series into a single aggregate price and quantity series for capital
services, which we denote by u(4)' and k(4)".

We turn now to our second straight line depreciation model. 1In thi