
1

Issues in the Measurement of Capital Services, Depreciation, Asset Price Changes
and Interest Rates

W. Erwin Diewert,
Discussion Paper 04-11,
Department of Economics,
University of British Columbia,
Vancouver, B.C.,
Canada, V6T 1Z1.                                            Revised December 29, 2004.

Email: diewert@econ.ubc.ca
Website: http://www.econ.ubc.ca/diewert/hmpgdie.htm

Abstract

The chapter considers the measurement of capital services aggregates under alternative
assumptions about the form of depreciation, the opportunity cost of capital and the
treatment of capital gains.  Four different models of depreciation are considered: (1) one
hoss shay or light bulb depreciation; (2) straight line depreciation; (3) declining balance
or geometric depreciation and (4) linearly declining efficiency profiles.  The chapter also
considers the differences between cross section and time series depreciation and
anticipated time series depreciation (which adds anticipated  obsolescence of the asset to
normal cross section depreciation of the asset).  Finally, issues involving the
measurement of certain intangible capital stocks are considered.

Key Words

Capital services, user costs, depreciation models, obsolescence, anticipated asset prices,
intangible assets.

Journal of Economic Literature Classification Codes

C43, C82, D24, D92.

TABLE OF CONTENTS

1. Introduction
2. The Fundamental Equations Relating Stocks and Flows of Capital
3. Cross Section Depreciation Profiles
4. The Empirical Determination of Interest Rates and Asset Inflation Rates
5. Obsolescence and Depreciation
6. Aggregation over Vintages of a Capital Good
7. The One Hoss Shay Model of Efficiency and Depreciation
8. The Straight Line Depreciation Model
9. The Declining Balance or Geometric Depreciation Model
10. The Linear Efficiency Decline Model
11. A Comparison of the Twelve Models
12. The Treatment of Intangible Assets
13. Conclusion



2

1. Introduction1

In this chapter, we discuss some of the problems involved in constructing price and
quantity series for both capital stocks and the associated flows of services when there are
general and asset specific price changes in the economy.2

In section 2, we present the basic equations relating stocks and flows of capital assuming
that data on the prices of vintages of a homogeneous capital good are available.  This
framework is not applicable under all circumstances but it is a framework that will allow
us to disentangle the effects of general price change, asset specific price change and
depreciation.

Section 3 continues the theoretical framework that was introduced in section 2.  We show
how information on vintage asset prices, vintage rental prices and vintage depreciation
rates are all equivalent under certain assumptions; i.e., knowledge of any one of these
three sequences or profiles is sufficient to determine the other two.

Section 4 discusses alternative sets of assumptions on nominal interest rates and
anticipated asset price changes.  We specify three different sets of assumptions that we
will use in our empirical illustration of the suggested methods.

Section 5 discusses the significance of our assumptions made in the previous section and
relates them to controversies in national income accounting.  In particular, we discuss
whether anticipated asset price decline should be an element of depreciation as
understood by national income accountants.

Section 6 discusses the problems involved in aggregating over vintages of capital, both in
forming capital stocks and capital services.  Instead of the usual perpetual inventory
method for aggregating over vintages, which assumes perfectly substitutable vintages of
the same stock, we suggest the use of a superlative index number formula to do the
aggregation.

Sections 7 to 10 show how the general algebra presented in sections 2 and 3 can be
adapted to deal with four specific models of depreciation.  The four models considered
are the one hoss shay model, the straight line depreciation model, the geometric model of
depreciation and the linear efficiency decline model.  In section 11, we show how these
models differ empirically by computing the corresponding stocks and flows using
Canadian data on two asset classes.  The details of the computations and the data used
may be found in Diewert (2004).

Section 12 shows how our framework can be modified to model the treatment of some
forms of intangible capital, such as investments in research and development.

Section 13 concludes with some observations on how statistical agencies might be able to
use the material presented in this chapter.
                                                  
1 The author is indebted to Carol Corrado, Kevin Fox, John Haltiwanger, Peter Hill, Ning Huang, Ulrich
Kohli, Alice Nakamura, Paul Schreyer, Dan Sichel and Frank Wykoff for helpful comments.  This research
was supported by a SSHRC research grant.  None of the above are responsible for any errors or opinions
expressed in the paper.  A longer version of the present paper, including the data used, is available as
Department of Economics Discussion Paper 04-10, University of British Columbia, Vancouver, Canada.
2 We cover some of the same issues discussed in the recent paper by Hill and Hill (2003).  However, Hill
and Hill did not deal with the problems associated with adjusting nominal interest rates for general
inflation.
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2. The Fundamental Equations Relating Stocks and Flows of Capital

Before we begin with our algebra, it seems appropriate to explain why accounting for the
contribution of capital to production is more difficult than accounting for the
contributions of labour or materials.  The main problem is that when a reproducible
capital input is purchased for use by a production unit at the beginning of an accounting
period, we cannot simply charge the entire purchase cost to the period of purchase.  Since
the benefits of using the capital asset extend over more than one period, the initial
purchase cost must be distributed somehow over the useful life of the asset.  This is the
fundamental problem of accounting.

In a noninflationary environment, the value of an asset at the beginning of an accounting
period is equal to the discounted stream of future rental payments that the asset is
expected to yield.  Thus the stock value of the asset is equal to the discounted future
service flows3 that the asset is expected to yield in future periods.  Let the price of a new
capital input purchased at the beginning of period t be P0

t.  In a noninflationary
environment, it can be assumed that the (potentially observable) sequence of (cross
sectional) vintage rental prices prevailing at the beginning of  period t can be expected to
prevail in future periods.  Thus in this no general inflation case, there is no need to have a
separate notation for future expected rental prices for a new asset as it ages.  However, in
an inflationary environment, it is necessary to distinguish between the observable rental
prices for the asset at different ages at the beginning of period t and future expected rental
prices for assets of various ages.4  Thus let f 0

t be the (observable) rental price of a new
asset at the beginning of period t, let f1

t be the (observable) rental price of a one period
old asset at the beginning of period t, let f2

t be the (observable) rental price of a 2 period
old asset at the beginning of period t, etc.  Then the fundamental equation relating the
stock value of a new asset at the beginning of period t, P0

t, to the sequence of cross
sectional rental prices for assets of age n  prevailing at the beginning of period t, {fn

t : n =
0,1,2,…} is5:

(1) P0
t = f0

t + [(1+i1
t)/(1+r1

t)] f1
t + [(1+i1

t)(1+i2
t)/(1+r1

t)(1+r2
t)] f2

t + …

In the above equation, 1+i1
t is the rental price escalation factor that is expected to apply

to a one period old asset going from the beginning of period t to the end of period t (or
equivalently, to the beginning of period t+1), (1+i1

t)(1+i2
t) is the rental price escalation

factor that is expected to apply to a 2 period old asset going from the beginning of period
t to the beginning of period t+2, etc.  Thus the in

t are expected rates of price change for
used assets of varying ages n  that are formed at the beginning of period t.  The term 1+r1

t

is the discount factor that makes a dollar received at the beginning of period t equivalent
to a dollar received at the beginning of period t+1, the term (1+r1

t)(1+r2
t) is the discount

factor that makes a dollar received at the beginning of period t equivalent to a dollar
received at the beginning of period t+2, etc.  Thus the rn

t are one period nominal interest
rates that represent the term structure of interest rates at the beginning of period t.6
                                                  
3 Walras (1954) (first edition published in 1874) was one of the earliest economists to state that capital
stocks are demanded because of the future flow of services that they render.  Although he was perhaps the
first economist to formally derive a user cost formula as we shall see, he did not work out the explicit
discounting formula that Böhm-Bawerk (1891; 342) was able to derive.
4 Note that these future expected rental prices are not generally observable due to the lack of futures
markets for these future period rentals of the assets of varying ages.
5 The sequence of (cross sectional) vintage rental prices {fn

t} is called the age-efficiency profile of the asset.
6 Peter Hill has noted a major problem with the use of equation (1) as the starting point of our discussion:
namely, unique assets will by definition not have used versions of the same asset in the marketplace during
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We now generalize equation (1) to relate the stock value of an n period old asset at the
beginning of period t, Pn

t, to the sequence of cross sectional vintage rental prices
prevailing at the beginning of period t, {fn

t}; thus for n = 0,1,2,…, we assume:

(2) Pn
t = fn

t + [(1+i1
t)/(1+r1

t)] fn+1
t + [(1+i1

t)(1+i2
t)/(1+r1

t)(1+r2
t)] fn+2

t + …

Thus older assets discount fewer terms in the above sum; i.e., as n increases by one, we
have one less term on the right hand side of (2).  However, note that we are applying the
same price escalation factors (1+i1

t), (1+i1
t)(1+i2

t), …, to escalate the cross sectional rental
prices prevailing at the beginning of period t, f1

t, f2
t,…, and to form estimates of future

expected rental prices for each vintage of the capital stock that is in use at the beginning
of period t.

The rental prices prevailing at the beginning of period t for assets of various ages, f0
t, f1

t,
… are potentially observable.7  These cross section rental prices reflect the relative
efficiency of the various vintages of the capital good that are still in use at the beginning
of period t.  It is assumed that these rentals are paid (explicitly or implicitly) by the users
at the beginning of period t.  Note that the sequence of asset stock prices for various ages
at the beginning of period t, P0

t, P1
t, … is not affected by general inflation provided that

the general inflation affects the expected asset rates of price change in
t and the nominal

interest rates rn
t in a proportional manner.  We will return to this point later.

The physical productivity characteristics of a unit of capital of each age are determined
by the sequence of cross sectional rental prices.  Thus a brand new asset is characterized
by the vector of current rental prices for assets of various ages, f0

t, f1
t, f2

t, … , which are
interpreted as “physical” contributions to output that the new asset is expected to yield
during the current period t (this is f0

t), the next period (this is f1
t), and so on.  An asset

which is one period old at the start of period t is characterized by the vector f1
t, f2

t, …,
etc.8

We have not explained how the expected rental price rates of price change in
t are to be

estimated.  We shall deal with this problem in section 4 below.  However, it should be
noted that there is no guarantee that our expectations about the future course of rental
prices are correct.

At this point, we make some simplifying assumptions about the expected rates of rental
price change for future periods in

t and the interest rates rn
t.  We assume that these

anticipated specific price change escalation factors at the beginning of each period t are
all equal; i.e., we assume:
                                                                                                                                                      
the current period and so the cross sectional rental prices fn

t  for assets of age n in period t will not exist for
these assets!  In this case, the fn

t should be interpreted as expected future rentals that the unique asset is
expected to generate at today’s prices.  The (1+in

t) terms then summarize expectations about the amount of
asset specific price change that is expected to take place.  This reinterpretation of equation (1) is more
fundamental but we chose not to make it our starting point because it does not lead to a completely
objective method for national statisticians to form reproducible estimates of these future rental payments.
However, in many situations (e.g., the valuation of a new movie), the statistician will be forced to attempt
to implement Hill’s (2000) more general model.  In section 12 below, we apply a variant of the expected
rentals interpretation of our equations to value intangible capital.
7 This is the main reason that we use this escalation of cross sectional rental prices approach to capital
measurement rather than the more fundamental discounted future expected rentals approach advocated by
Hill.
8 Triplett (1996; 97) used this characterization for capital assets of various vintages.



5

(3) in
t = it ;                                                n = 1,2,…

We also assume that the term structure of (nominal) interest rates at the beginning of each
period t is constant; i.e., we assume:

(4) rn
t = rt ;                                                n = 1,2,…

However, note that as the period t changes, rt and it can change.

Using assumptions (3) and (4), we can rewrite the system of equations (2), which relate
the sequence or profile of stock prices of age n at the beginning of period t {Pn

t} to the
sequence or profile of (cross sectional) rental prices for assets of age n at the beginning
of period t {fn

t}, as follows:

(5) P0
t = f0

t + [(1+it)/(1+rt)] f1
t + [(1+it)/(1+rt)]2 f2

t + [(1+it)/(1+rt)]3 f3
t + …

      P1
t = f1

t + [(1+it)/(1+rt)] f2
t + [(1+it)/(1+rt)]2 f3

t + [(1+it)/(1+rt)]3 f4
t + …

      P2
t = f2

t + [(1+it)/(1+rt)] f3
t + [(1+it)/(1+rt)]2 f4

t + [(1+it)/(1+rt)]3 f5
t + …

     …
      Pn

t = fn
t + [(1+it)/(1+rt)] fn+1

t + [(1+it)/(1+rt)]2 fn+2
t + [(1+it)/(1+rt)]3 fn+3

t + …

On the left hand side of equations (5), we have the sequence of period t asset prices by
age starting with the price of a new asset, P0

t, moving to the price of an asset that is one
period old at the start of period t, P1

t, then moving to the price of an asset that is 2 periods
old at the start of period t, P2

t, and so on.  On the right hand side of equations (5), the first
term in each equation is a member of the sequence of rental prices by age of asset that
prevails in the market (if such markets exist) at the beginning of period t.  Thus f0

t is the
rent for a new asset, f1

t is the rent for an asset that is one period old at the beginning of
period t, f2

t is the rent for an asset that is 2 periods old, and so on.  This sequence of
current market rental prices for the assets of various vintages is then extrapolated out into
the future using the anticipated price escalation rates (1+it), (1+it)2, (1+it)3, etc. and then
these future expected rentals are discounted back to the beginning of period t using the
nominal discount factors (1+rt), (1+rt)2, (1+rt)3, etc.  Note that given the period t expected
asset inflation rate it and the period t nominal discount rate rt, we can go from the (cross
sectional) sequence of vintage rental prices {fn

t} to the (cross sectional) sequence of
vintage asset prices {Pn

t} using equations (5).  We shall show below how this procedure
can be reversed; i.e., we shall show how given the sequence of cross sectional asset
prices, we can construct estimates for the sequence of cross sectional rental prices.

Böhm-Bawerk (1891; 342) considered a special case of (5) where all service flows fn
were equal to 100 for n = 0,1,…,6 and equal to 0 thereafter, where the asset inflation rate
was expected to be 0 and where the interest rate r was equal to .05 or 5 %.9  This is a
special case of what has come to be known as the one hoss shay model and we shall
consider it in more detail in section 7.

Note that equations (5) can be rewritten as follows:10

                                                  
9 Böhm-Bawerk (1891; 343) went on and constructed the sequence of vintage asset prices using his special
case of equations (5).
10 Christensen and Jorgenson (1969; 302) do this for the geometric depreciation model except that they
assume that the rental is paid at the end of the period rather than the beginning.  Variants of the system of
equations (6) were derived by Christensen and Jorgenson (1973), Jorgenson (1989; 10), Hulten (1990; 128)
and Diewert and Lawrence (2000; 276).  Irving Fisher (1908; 32-33) also derived these equations in words.
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(6) P0
t = f0

t + [(1+it)/(1+rt)] P1
t    ;

      P1
t = f1

t + [(1+it)/(1+rt)] P2
t    ;

      P2
t = f2

t + [(1+it)/(1+rt)] P3
t    ;

     …
      Pn

t = fn
t + [(1+it)/(1+rt)] Pn+1

t ; …

The first equation in (6) says that the value of a new asset at the start of period t, P0
t, is

equal to the rental that the asset can earn in period t, f0
t,11 plus the expected asset value of

the capital good at the end of period t, (1+it) P1
t, but this expected asset value must be

divided by the discount factor, (1+rt), in order to convert this future value into an
equivalent beginning of period t value.12

Now it is straightforward to solve equations (6) for the sequence of period t cross
sectional rental prices, {fn

t}, in terms of the cross sectional asset prices, {Pn
t}:

(7) f0
t = P0

t - [(1+it)/(1+rt)] P1
t     = (1+rt)-1 [P0

t (1+rt) - (1+it) P1
t]

      f1
t = P1

t - [(1+it)/(1+rt)] P2
t     = (1+rt)-1 [P1

t (1+rt) - (1+it) P2
t]

      f2
t = P2

t - [(1+it)/(1+rt)] P3
t     = (1+rt)-1 [P2

t (1+rt) - (1+it) P3
t]

      …
      fn

t = Pn
t - [(1+it)/(1+rt)] Pn+1

t  = (1+rt)-1 [Pn
t (1+rt) - (1+it) Pn+1

t] ; …

Thus equations (5) allow us to go from the sequence of rental prices by age n {fn
t} to the

sequence of  asset prices by age n {Pn
t} while equations (7) allow us to reverse the

process.

Equations (7) can be derived from elementary economic considerations. Consider the first
equation in (7).  Think of a production unit as purchasing a unit of the new capital asset at
the beginning of period t at a cost of P0

t and then using the asset throughout period t.
However, at the end of period t, the producer will have a depreciated asset that is
expected to be worth (1+it) P1

t.  Since this offset to the initial cost of the asset will only be
received at the end of period t, it must be divided by (1+rt) to express the benefit in terms
of beginning of period t dollars.  Thus the expected net cost of using the new asset for
period t13 is P0

t - [(1+it)/(1+rt)] P1
t.

The above equations assume that the actual or implicit period t rental payments fn
t for

assets of different ages n are made at the beginning of period t.  It is sometimes
convenient to assume that the rental payments are made at the end of each accounting
period.  Thus we define the end of period t rental price or user cost for an asset that is n
periods old at the beginning of period t, un

t, in terms of the corresponding beginning of
period t rental price fn

t as follows:

(8) un
t ≡ (1+rt) fn

t  ;  n = 0,1,2,…

                                                  
11 Note that we are implicitly assuming that the rental is paid to the owner at the beginning of period t.
12 Another way of interpreting say the first equation in (6) runs as follows: the purchase cost of a new asset
P0

t less the rental f0
t (which is paid immediately at the beginning of period t) can be regarded as an

investment, which must earn the going rate of return rt.  Thus we must have [P0
t - f0

t](1+rt) = (1+it)P1
t which

is the (expected) value of the asset at the end of period t.  This line of reasoning can be traced back to
Walras (1954; 267).
13 This explains why the rental prices f n

t are sometimes called user costs.  This derivation of a user cost was
used by Diewert (1974; 504), (1980; 472-473), (1992a; 194) and by Hulten (1996; 155).
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Thus if the rental payment is made at the end of the period instead of the beginning, then
the beginning of the period rental fn

t must be escalated by the interest rate factor (1+rt) in
order to obtain the end of the period user cost un

t.

Using equations (8) and the second set of equations in (7), it can readily be shown that
the sequence of end of period t user costs {un

t} can be defined in terms of the period t
sequence of  asset prices by age {Pn

t} as follows:

(9) u0
t = P0

t (1+rt) - (1+it) P1
t

      u1
t = P1

t (1+rt) - (1+it) P2
t

      u2
t = P2

t (1+rt) - (1+it) P3
t

      …
      un

t = Pn
t (1+rt) - (1+it) Pn+1

t ; …

Equations (9) can also be given a direct economic interpretation.  Consider the following
explanation for the user cost for a new asset, u0

t.  At the end of period t, the business unit
expects to have an asset worth (1+it) P1

t.  Offsetting this benefit is the beginning of the
period asset purchase cost, P0

t.  However, in addition to this cost, the business must
charge itself either the explicit interest cost that occurs if money is borrowed to purchase
the asset or the implicit opportunity cost of the equity capital that is tied up in the
purchase.  Thus offsetting the end of the period benefit (1+it) P1

t is the initial purchase
cost and opportunity interest cost of the asset purchase, P0

t (1+rt), leading to a end of
period t net cost of  P0

t (1+rt) - (1+it) P1
t or u0

t.

It is interesting to note that in both the accounting and financial management literature of
the past century, there was a reluctance to treat the opportunity cost of equity capital tied
up in capital inputs as a genuine cost of production.14  However, more recently, there is an
acceptance of an imputed interest charge for equity capital as a genuine cost of
production.15

In the following section, we will relate the asset price profiles {Pn
t} and the user cost

profiles {un
t} to depreciation profiles.  However, before turning to the subject of

depreciation, it is important to stress that the analysis presented in this section is based on
a number of restrictive assumptions, particularly on future price expectations.  Moreover,
we have not explained how these asset price expectations are formed and we have not
explained how the period t nominal interest rate is to be estimated (we will address these
topics in section 7 below).  We have not explained what should be done if the sequence
of second hand asset prices {Pn

t} is not available and the sequences of vintage rental
prices or user costs, {fn

t} or {un
t}, are also not available (we will address this problem in

later sections as well).  We have also assumed that asset values and user costs are
independent of how intensively the assets are used.  Finally, we have not modeled
uncertainty (about future prices and the useful lives of assets) and attitudes towards risk
on the part of producers.  Thus the analysis presented in this chapter is only a start on the
difficult problems associated with measuring capital input.

3. Cross Section Depreciation Profiles

Recall that in the previous section, Pn
t was defined to be the price of an asset that was n

periods old at the beginning of period t.  Generally, the decline in asset value as we go
                                                  
14 This literature is reviewed in Diewert and Fox (1999; 271-274).
15 Stern Stewart & Co. has popularized the idea of charging for the opportunity cost of equity capital and
has called the resulting income concept,  EVA, Economic Value Added.
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from one vintage to the next oldest is called depreciation.  More precisely, we define the
cross section depreciation Dn

t 16 of an asset that is n periods old at the beginning of period
t as

(10) Dn
t ≡ Pn

t - Pn+1
t   ; n = 0,1,2,…

Thus Dn
t is the value of an asset that is n periods old at the beginning of period t, Pn

t,
minus the value of an asset that is n+1 periods old at the beginning of period t, Pn+1

t.

Obviously, given the sequence of period t cross section asset prices {Pn
t}, we can use

equations (10) to determine the period t sequence of declines in asset values by age,
{Dn

t}.  Conversely, given the period t cross section depreciation sequence or profile,
{Dn

t}, we can determine the period t  asset prices by age n by adding up amounts of
depreciation:

(11) P0
t = D0

t + D1
t + D2

t + …
        P1

t = D1
t + D2

t + D3
t + …

        …
        Pn

t = Dn
t + Dn+1

t + Dn+2
t + …

Rather than working with first differences of asset prices by age, it is more convenient to
reparameterize the pattern of cross section depreciation by defining the period t
depreciation rate dn

t for an asset that is n periods old at the start of period t as follows:

(12) dn
t ≡ 1 - [Pn+1

t/Pn
t] = Dn

t / Pn
t ;  n = 0,1,2,…

In the above definitions, we require n to be such that Pn
t is positive.17

Obviously, given the sequence of period t asset prices by age n, {Pn
t}, we can use

equations (12) to determine the period t sequence of cross section depreciation rates,
{dn

t}.  Conversely, given the cross section sequence of period t depreciation rates, {dn
t},

as well as the price of a new asset in period t, P0
t, we can determine the period t asset

prices by age as follows:

(13) P1
t = (1 - d0

t) P0
t

        P2
t = (1 - d0

t)(1 - d1
t) P0

t

        …
        Pn

t = (1 - d0
t)(1 - d1

t)…(1 - dn-1
t) P0

t ; …

The interpretation of equations (13) is straightforward.  At the beginning of period t, a
new capital good is worth P0

t.  An asset of the same type but which is one period older at
the beginning of period t is less valuable by the amount of depreciation d0

t P0
t and hence

                                                  
16 This terminology is due to Hill (1999) who distinguished the decline in second hand asset values due to
aging (cross section depreciation) from the decline in an asset value over a period of time (time series
depreciation).  Triplett (1996; 98-99) uses the cross section definition of depreciation (calling it
deterioration) and shows that it is equal to the concept of capital consumption in the national accounts but
he does this under the assumption of no expected real asset price change.  We will examine the relationship
of cross section to time series depreciation in section 5 below.
17 This definition of depreciation dates back to Hicks (1939 ;176) at least and was used extensively by
Edwards and Bell (1961; 175), Hulten and Wykoff (1981a) (1981b) (who call it deterioration), Diewert
(1974; 504) and Hulten (1990; 128) (1996; 155).
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is worth (1 - d0
t) P0

t, which is equal to P1
t.  An asset which is two periods old at the

beginning of period t is less valuable than a one period old asset by the amount of
depreciation d1

t P1
t and hence is worth P2

t = (1 - d1
t) P1

t which is equal to (1 - d1
t)(1 - d0

t)
P0

t using the first equation in (13) and so on.  Suppose L - 1 is the first integer which is
such that dL-1

t is equal to one.  Then Pn
t equals zero for all n ≥ L; i.e., at the end of L

periods of use, the asset no longer has a positive rental value.  If L = 1, then a new asset
of this type delivers all of its services in the first period of use and the asset is in fact a
nondurable asset.

Now substitute equations (12) into equations (9) in order to obtain the following formulae
for the sequence of the end of the period t user costs by age n, {un

t}, in terms of the price
of a new asset at the beginning of period t, P0

t, and the sequence of cross section
depreciation rates, {dn

t}:

(14) u0
t = [(1+rt) - (1+it)(1 - d0

t)] P0
t

        u1
t = (1 - d0

t)[(1+rt) - (1+it)(1 - d1
t)] P0

t

        …
        un

t = (1 - d0
t)… (1 - dn-1

t)[(1+rt) - (1+it)(1 - dn
t)] P0

t ; …

Thus given P0
t (the beginning of period t price of a new asset), it (the nominal rate of new

asset price change that is expected at the beginning of period t), rt (the one period
nominal interest rate that the business unit faces at the beginning of period t) and given
the sequence of cross section vintage depreciation rates prevailing at the beginning of
period t (the dn

t), then we can use equations (14) to calculate the sequence of the end of
the period user costs for period t, the un

t.  Of course, given the un
t, we can use equations

(8) to calculate the beginning of the period user costs (the fn
t) and then use the fn

t to
calculate the sequence of asset prices by age Pn

t using equations (5) and finally, given the
Pn

t, we can use equations (12) in order to calculate the sequence of depreciation rates for
assets of age n at the beginning of period t, the dn

t.  Thus given any one of these
sequences or profiles, all of the other sequences are completely determined.  This means
that assumptions about depreciation rates, the pattern of user costs by age of asset or the
pattern of asset prices by age of asset cannot be made independently of each other.18

It is useful to look more closely at the first equation in (14), which expresses the user cost
or rental price of a new asset at the end of period t, u0

t, in terms of the depreciation rate
d0

t, the one period nominal interest rate rt, the new asset inflation rate it that is expected to
prevail at the beginning of period t and the beginning of period t price for a new asset, P0

t:

(15) u0
t = [(1+rt) - (1+it)(1 - d0

t)] P0
t = [rt - it + (1+ it)d0

t] P0
t.

Thus the user cost of a new asset u0
t that is purchased at the beginning of period t (and the

actual or imputed rental payment is made at the end of the period) is equal to rt -  it (a
nominal interest rate minus an asset inflation rate which can be loosely interpreted19 as a
real interest rate) times the initial asset cost P0

t plus (1+ it)d0
tP0

t which is depreciation on
                                                  
18 This point was first made explicitly by Jorgenson and Griliches (1967; 257); see also Jorgenson and
Griliches (1972; 81-87).  Much of the above algebra for switching from one method of representing vintage
capital inputs to another was first developed  by Christensen and Jorgenson (1969; 302-305) (1973) for the
geometrically declining depreciation model.  The general framework for an internally consistent treatment
of capital services and capital stocks in a set of vintage accounts was set out by Jorgenson (1989) and
Hulten (1990; 127-129) (1996; 152-160).
19 We will provide a more precise definition of a real interest rate later.
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the asset at beginning of the period prices, d1
tP0

t, times one plus  the expected rate of asset
price change, (1+ it).20  If we further assume that the expected rate of asset price change i t

is 0, then (15) further simplifies to:

(16) u0
t = [rt + d0

t] P0
t.

Under these assumptions, the user cost of a new asset is equal to the interest rate plus the
depreciation rate times the initial purchase price.21  This is essentially the user cost
formula that was obtained by Walras (1954; 268-269) in 1874.

However, the basic idea that a durable input should be charged a period price that is equal
to a depreciation term plus a term that would cover the cost of financial capital goes back
to Babbage (1835; 287) and others22.

Babbage did not proceed further with the user cost idea.  Walras seems to have been the
first economist who formalized the idea of a user cost into a mathematical formula.
However, the early industrial engineering literature also independently came up with the
user cost idea; Church (1901; 734 and 907-908) in particular gave a very modern
exposition of the ingredients needed to construct user costs or machine rents.

Church was well aware of the importance of determining the “right” rate to be charged
for the use of a machine in a multiproduct enterprise.  This information is required not
only to price products appropriately but to determine whether an enterprise should make
or purchase a particular commodity.  Babbage (1835; 203) and Canning (1929; 259-260)
were also aware of the importance of determining the right machine rate charge:23

The above equations relating asset prices by age n, Pn
t, beginning of the period user costs

by age n, fn
t, end of the period user costs, un

t, and the (cross section) depreciation rates dn
t

are the fundamental ones that we will specialize in subsequent sections in order to
measure both wealth capital stocks and capital services under conditions of inflation.  In

                                                  
20 This formula was obtained by Christensen and Jorgenson (1969; 302) for the geometric model of
depreciation but it is valid for any depreciation model.  Griliches (1963; 120) also came very close to
deriving this formula in words: “In a perfectly competitive world the annual rent of a machine would equal
the marginal product of its services.  The rent itself would be determined by the interest costs on the
investment, the deterioration in the future productivity  of the machine due to current use, and the expected
change in the price of the machine (obsolescence).”
21 Using equations (13) and (14) and the assumption that the asset inflation rate i t = 0, it can be shown that
the user cost of an asset that is n periods old at the start of period t can be written as un

t = (rt + dn
t)Pn

t where
Pn

t is the beginning of period t second hand market price for the asset.
22 Solomons (1968; 9-17) indicates that interest was regarded as a cost for a durable input in much of the
nineteenth century accounting literature.  The influential book by Garcke and Fells (1893) changed this.
23 Under moderate inflation, the difficulties with traditional cost accounting based on historical cost and no
proper allowance for the opportunity of capital, the proper pricing of products becomes very difficult.
Diewert and Fox (1999; 271-274) argued that this factor contributed to the great productivity slowdown
that started around 1973 and persisted to the early 1990’s.  The traditional method of cost accounting can
be traced back to a book first published in 1887 by the English accountants, Garcke and Fells (1893; 70-
71). Their rather crude approach to cost accounting should be compared to the masterful analysis of
Church!  Garcke and Fells (1893; 72-73) endorsed the idea that deprecation was an admissible item of cost
that should be allocated in proportion to the prime cost (i.e., labour and materials cost) of manufacturing an
article but they explicitly ruled out interest as a cost.  The aversion of accountants to include interest as a
cost can be traced back to the influence of Garcke and Fells.
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the following section, we shall consider several options that could be used in order to
determine empirically the interest rates rt and the expected asset rates of price change it.

4. The Empirical Determination of Interest Rates and Rates of Asset Price Change

We consider initially three broad approaches24 to the determination of the nominal
interest rate rt that is to be used to discount future period value flows by the business units
in the aggregate under consideration:

• Use the ex post rate of return that will just make the sum of the user costs exhaust the
gross operating surplus of the production sectors for the aggregate under
consideration.

• Use an aggregate of nominal interest rates that the production sectors in the
aggregate might be facing at the beginning of each period.

• Take a fixed real interest rate and add to it actual ex post consumer price inflation or
anticipated consumer price inflation.

The first approach was used for the entire private production sector of the economy by
Jorgenson and Griliches (1967; 267) and for various sectors of the economy by
Christensen and Jorgenson (1969; 307).  It is also widely used by statistical agencies.  It
has the advantage that the value of output for the sector will exactly equal the value of
input in a consistent accounting framework.  It has the disadvantages that it is subject to
measurement error and it is an ex post rate of return which may not reflect the economic
conditions facing producers at the beginning of the period.  This approach (incorrectly in
our view) transforms pure profits (or losses) into a change in the opportunity cost of
financial capital.

The second approach suffers from aggregation problems.  There are many interest rates in
an economy at the beginning of an accounting period and the problem of finding the
“right” aggregate of these rates is not a trivial one.

The third approach works as follows.  Let the consumer price index for the economy at
the beginning of period t be ct say.  Then the ex post general consumer inflation rate for
period t is rt defined as:

(17) 1 + rt ≡ ct+1/ct .

Let the production units under consideration face the real interest rate r*t.  Then by the
Fisher (1896) effect, the relevant nominal interest rate that the producers face should be
approximately equal to rt defined as follows:

(18) rt ≡ (1+r*t)(1+rt) -1.

The Australian Bureau of Statistics assumes that producers face a real interest rate of 4
per cent.  This is consistent with long run observed economy wide real rates of return for
most OECD countries which fall in the 3 to 5 per cent range.  We shall choose this third
method for defining nominal interest rates and choose the real rate of return to be 4 % per
                                                  
24 Other methods for determining the appropriate interest rates that should be inserted into user cost
formulae are discussed by Harper, Berndt and Wood (1989) and in Chapter 5 of Schreyer (2001).  Harper,
Berndt and Wood (1989) evaluate empirically 5 alternative rental price formulae using geometric
depreciation but making different assumptions about the interest rate and the treatment of asset price
change.  They show that the choice of formula matters (as we will later).
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annum; i.e., we assume that the nominal rate rt is defined by (18) with the real rate
defined by

(19) r*t ≡ .04

assuming that the accounting period chosen is a year.25

We turn now to the determination of the asset expected rates of price change26, the i t,
which appear in most of the formulae derived in the preceding sections of this chapter.
There are three broad approaches that can be used in this context:

• Use actual ex post rates of price change for a new asset over each period.
• Assume that each asset rate of price change is equal to the general inflation rate for

each period.
• Estimate anticipated rates of asset price change for each period.

In what follows, we will compute cross sectional user costs using Canadian data on
investments for two broad classes of assets (nonresidential construction and machinery
and equipment) for 4 different sets of assumptions about depreciation or the relative
efficiency of assets by age.  We will undertake these computations in an inflationary
environment and make each of the three sets of assumptions about the asset inflation rates
listed above for each of the 4 depreciation models, giving 12 models in all that will be
compared.  If the various models give very different results, this indicates that the
statistical agency computing capital stocks and service flows under inflation must choose
its preferred model with some care.

When we assume that the rate of price change for each asset is equal to the general
inflation rate rt defined by (17), the equations presented earlier simplify.  Thus if we
replace 1+it  by 1+r t and 1+rt by (1+r*)(1+rt), equations (5), which relate the period t
asset prices by age n Pn

t to the rental prices fn
t, become:

(20) P0
t = f0

t + [1/(1+r*)] f1
t + [1/(1+r*)]2 f2

t + [1/(1+r*)]3 f3
t + …

        P1
t = f1

t + [1/(1+r*)] f2
t + [1/(1+r*)]2 f3

t + [1/(1+r*)]3 f4
t + …

           …
        Pn

t = fn
t + [1/(1+r*)] fn+1

t + [1/(1+r*)]2 fn+2
t + [1/(1+r*)]3 fn+3

t + …

Note that only the constant real interest rate r* appears in these equations.

If we replace 1+it  by 1+rt and 1+rt by (1+r*)(1+rt), equations (14), which relate the end
of period user costs un

t to the depreciation rates dn
t, become:

(21) u0
t = (1+rt)[(1+r*) - (1 - d0

t)] P0
t              = (1+rt)[r* + d0

t] P0
t

        u1
t = (1+rt)(1 - d0

t)[(1+r*) - (1 - d1
t)] P0

t  = (1+rt)(1 - d0
t)[r* + d1

t] P0
t

        …
        un

t = (1+rt)(1 - d0
t)… (1 - dn-1

t)[(1+r*) - (1 - dn
t)] P0

t

                                                                            = (1+rt)(1 - d0
t)…(1 - dn-1

t) [r* + dn
t] P0

t.

                                                  
25 If we are in a high inflation situation so that the accounting period becomes a quarter or a month, then r *t

must be chosen to be appropriately smaller.
26 These are sometimes called revaluation terms in user cost formulae.
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Now use equations (8) and 1+rt = (1+r*)(1+rt) and substitute into (21) to obtain the
following equations, which relate the beginning of period user costs fn

t to the depreciation
rates dn

t:

(22) f0
t = (1+r*)-1[r* + d0

t] P0
t

        f1
t = (1+r*)-1(1 - d0

t)[r* + d1
t] P0

t

        …
        fn

t = (1+r*)-1(1 - d0
t)…(1 - dn-1

t) [r* + dn
t] P0

t.

Note that only the constant real interest rate r* appears in equations (22) but equations
(21) also have the general inflation rate (1+rt) as a multiplicative factor.

As mentioned above, in our third class of assumptions about rates of asset price change,
we want to estimate anticipated rates of asset price change and use these estimates as our
it in the various formulae we have exhibited.  Unfortunately, there are any number of
forecasting methods that could be used to estimate the anticipated asset rates of price
change.  We will take a somewhat different approach than a pure forecasting one: we will
simply smooth the observed ex post new asset rates of price change and use these
smoothed rates as our estimates of anticipated rates.27  A similar forecasting problem
arises when we use ex post actual consumer price index inflation rates (recall (17) and
(18) above) in order to generate anticipated general inflation rates.  Thus in our third set
of models, we will use both smoothed asset inflation rates and smoothed general inflation
rates as our estimates for anticipated rates.  In our first class of models, we will use actual
ex post rates in both cases.

Before we proceed to consider our four specific depreciation models, we briefly consider
in the next section a topic of some current interest: namely the interaction of (foreseen)
obsolescence and depreciation.  We also discuss cross section versus time series
depreciation.

5. Obsolescence and Depreciation

We begin this section with a definition of the time series depreciation of an asset.  Define
the ex post time series depreciation of an asset that is n periods old at the beginning of
period t, En

t, to be its second hand market price at the beginning of period t, Pn
t, less the

price of an asset that is one period older at the beginning of period t+1, Pn+1
t+1; i.e.,

(23) En
t ≡ Pn

t - Pn+1
t+1   ; n = 0,1,2,…

Definitions (23) should be contrasted with our earlier definitions (10), which defined the
cross section amounts of depreciation for the same assets at the beginning of period t, Dn

t

≡ Pn
t - Pn+1

t.

We can now explain why we preferred to work with the cross section definition of
depreciation, (10), over the time series definition, (23).  The problem with (23) is that
time series depreciation captures the effects of changes in two things: changes in time

                                                  
27 Unfortunately, different analysts may choose different smoothing methods so there may be a problem of
a lack of reproducibility in our estimating procedures.  Harper, Berndt and Wood (1989; 351) note that the
use of time series techniques to smooth ex post asset inflation rates and the use of such estimates as
anticipated price change dates back to Epstein (1977).
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(this is the change in t to t+1)28 and changes in the age of the asset (this is the change in n
to n+1).29  Thus time series depreciation aggregates together two effects: the asset
specific price change that occurred between time t and time t+1 (asset revaluation due to
general inflation and asset specific price change) and the effects of asset aging
(depreciation).  Thus the time series definition of depreciation combines together two
distinct effects.

The above definition of ex post time series depreciation is the original definition of
depreciation and it extends back to the very early beginnings of accounting theory.30

However, what has to be kept in mind that these early authors who used the concept of
time series depreciation were implicitly or explicitly assuming that prices were stable
across time, in which case, time series and cross section depreciation coincide.

P. Hill (2000; 6) and Hill and Hill (2003; 617)31 recently argued that a form of time series
depreciation that included expected obsolescence was to be preferred over cross section
depreciation for national accounts purposes.  Since the depreciation rates dn

t defined by
(12) are cross section depreciation rates and they play a key role in the beginning and end
of period t user costs fn

t and un
t defined by (14), (21) and (22), it is necessary to clarify

their use in the context of Hill’s point that these depreciation rates should not be used to
measure depreciation in the national accounts.

Our response to the Hill critique is twofold:

• Cross section depreciation rates as we have defined them are affected by anticipated
obsolescence in principle but

• Hill is correct in arguing that cross section depreciation will not generally equal ex
post time series depreciation or anticipated time series depreciation.

Before discussing the above two points in detail, it is necessary to discuss the concept of
obsolescence in a bit more detail.  Wykoff (2004), in his discussion of this chapter, takes
a narrow “technological” definition of obsolescence.  In his view, an asset can only
become obsolete if a new model of the asset becomes available which can deliver at least
the service flow of the old asset at a lower price.  In his view, if there is no technological
change embodied in the new asset, then by definition, there is no obsolescence.
However, it is possible to define obsolescence more broadly and include the effects of
changes in the economy that reduce the demand for the asset’s services to such an extent
that its real price falls.32  In what follows, we will use the second broader concept of
                                                  
28 This change could be captured by either Pn

t - Pn
t+1 or Pn+1

t - Pn+1
t+1.

29 This change could be captured by either Pn
t - Pn+1

t or Pn
t+1 - Pn+1

t+1.
30 See for example Matheson (1910; 35) and Hotelling (1925; 341).
31 We agree in general with P. Hill (2000) and Hill and Hill (2003) that expected obsolescence should be
added to cross sectional depreciation to form an overall depreciation charge.  However, Hill and Hill
assumed that there was no general inflation in their exposition so some clarification is needed to deal with
this complication.
32 This broader definition goes back to Church at least: “Even though a machine is used fairly and
uniformly as contemplated when the rate of depreciation was fixed there is another influence that may
shorten its period of usefulness in an unexpected way.  The progress of the technical art in which it is
employed may develop more efficient machines for doing the same work, so that it becomes advisable to
scrap it long before it is worn out.  The machine becomes obsolete and the loss of value from this cause is
called ‘obsolescence’.  Again, unless the machine is of a very generalized type, such as an engineer’s lathe,
another type of misfortune may overtake it.  If it is a machine that can only be used for certain definite
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obsolescence.  One more point must be considered at this point.  If there is technological
obsolescence due to a new and improved model of the asset being made available, then
we assume that the price of the new model has been (somehow) quality adjusted so that
the quality adjusted price is measured in quantity units that are comparable to the older
models.

Now consider the first dot point above.  Provisionally, we define anticipated
obsolescence as a situation where the expected new asset rate of price change (adjusted
for quality change) it is negative.33  For example, everyone anticipates that the quality
adjusted price for a new computer next quarter will be considerably lower than it is this
quarter.34  Now turn back to equations (5) above, which define the profile of vintage asset
prices Pn

t at the start of period t.  It is clear that the negative it plays a role in defining the
sequence of vintage asset prices as does the sequence of vintage rental prices that is
observed at the beginning of period t, the fn

t.  Thus in this sense, cross sectional
depreciation rates certainly embody assumptions about anticipated obsolescence.

Thus for an asset that has a finite life, as we move down the rows of equations (5), the
number of discounted rental terms decline and hence asset value declines, which is
Griliches’ (1963; 119) concept of exhaustion.  If the cross sectional rental prices are
monotonically declining (due to their declining efficiency), then as we move down the
rows of equations (5), the higher rental terms are being dropped one by one so that the
asset values will also decline from this factor, which is Griliches’ (1963; 119) concept of
deterioration.  Finally, a negative anticipated asset inflation rate will cause all future
period rentals to be discounted more heavily, which could be interpreted as Griliches’
(1963; 119) concept of obsolescence.35  Thus all of these explanatory factors are
imbedded in equations (5).

Now consider the second dot point: that cross section depreciation is not really adequate
to measure time series depreciation in some sense to be determined.

                                                                                                                                                      
kinds of work or some special article, as for example many of the machines used in automobile and bicycle
manufacture, it may happen that changes in demand, or in style, make the manufacture of that special
article no longer profitable.  In this case, unless the machine can be transformed for another use, it is a dead
loss.”  A.H. Church (1917; 192-193).

33 Paul Schreyer and Peter Hill noted a problem with this provisional definition of anticipated obsolescence
as a negative value of the expected asset inflation rate: it will not work in a high inflation environment.  In
a high inflation environment, the nominal asset inflation rate it will generally be positive but we will require
this nominal rate to be less than general inflation in order to have anticipated obsolescence.  Thus our final
definition of anticipated obsolescence is that the real asset inflation rate i*t defined later by (28) be
negative; see the discussion just above equation (30) below.
34 Our analysis assumes that the various vintages of capital are adjusted for quality change (if any occurs) as
they come on the market.  In terms of our Canadian empirical example to follow, we are assuming that
Statistics Canada correctly adjusted the published investment price deflators for machinery and equipment
and nonresidential construction for quality change.  We also need to assume that the form of quality change
affects all future efficiency factors (i.e., the fn

t) in a proportional manner.  This is obviously only a rough
approximation to reality: technical change may increase the durability of a capital input or it may decrease
the amount of maintenance or fuel that is required to operate the asset.  These changes can lead to
nonproportional changes in the fn

t.
35 However, it is more likely that what Griliches had in mind was Hill’s second point; i.e., that time series
depreciation will be larger than cross section depreciation in a situation where i*t is negative.
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Define the ex ante time series depreciation of an asset that is n periods old at the
beginning of period t, Dn

t, to be its second hand market price at the beginning of period t,
Pn

t, less the anticipated price of an asset that is one period older at the beginning of
period t+1, (1+it) Pn+1

t; i.e.,

(24) Dn
t ≡ Pn

t - (1+it) Pn+1
t   ; n = 0,1,2,…

Thus anticipated time series depreciation for an asset that is t periods old at the start of
period t, Dn

t, differs from the corresponding cross section depreciation defined by (10),
Dn

t ≡ Pn
t - Pn+1

t, in that the anticipated new asset rate of price change, it, is missing from
Dn

t.  However, note that the two forms of depreciation will coincide if the expected asset
rate of price change it is zero.

We can use equations (12) and (13) in order to define the ex ante depreciation amounts
Dn

t in terms of the cross section depreciation rates dn
t.  Thus using definitions (24), we

have:

(25) Dn
t ≡ Pn

t - (1+it) Pn+1
t                                                          n = 0,1,2,…

              = Pn
t - (1+it)(1-dn

t) Pn
t                                                 using (12)

              = [1 - (1+it)(1-dn
t)] Pn

t

              = (1-d1
t)(1-d2

t) … (1-dn-1
t)[1 - (1+it)(1-dn

t)] P0
t       using (13)

              = (1-d1
t)(1-d2

t) … (1-dn-1
t)[ dn

t - it(1-dn
t)] P0

t.

We can compare the above sequence of ex ante time series depreciation amounts Dn
t with

the corresponding sequence of cross section depreciation amounts:

(26) Dn
t ≡ Pn

t - Pn+1
t                                                                    n = 0,1,2,…

              = Pn
t - (1-dn

t) Pn
t                                                          using (12)

              = [1 - (1-dn
t)] Pn

t

              = (1-d1
t)(1-d2

t) … (1-dn-1
t)[ dn

t] P0
t                            using (13).

Of course, if the anticipated rate of asset price change it is zero, then (25) and (26)
coincide and ex ante time series depreciation equals cross section depreciation.  If we are
in the provisional expected obsolescence case with it negative, then it can be seen
comparing (25) and (26) that Dn

t > Dn
t for all n such that Dn

t > 0; i.e., if it is negative (and
0 < dn

t < 1), then ex ante time series depreciation exceeds cross section depreciation over
all in use vintages of the asset.  If it is positive so that the rental price of each vintage is
expected to rise in the future , then ex ante time series depreciation is less than the
corresponding cross section depreciation for all assets that have a positive price at the end
of period t.  This corresponds to the usual result in the vintage user cost literature where
capital gains or an ex post price increase for a new asset leads to a negative term in the
user cost formula (plus a revaluation of the cross section depreciation rate).  Here we are
restricting ourselves to anticipated capital gains rather than the actual ex post capital
gains and we are focusing on depreciation concepts rather than the full user cost.

This is not quite the end of the story in the high inflation context.  National income
accountants often readjust asset values at either the beginning or end of the accounting
period to take into account general price level change.  At the same time, they also want
to decompose nominal interest payments into a real interest component and another
component that compensates lenders for general price change.  So r*t
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Recall (17), which defined the general period t inflation rate rt and (18), which related
the period t nominal interest rate rt to the real rate r*t and the inflation rate rt.  We rewrite
(18) as follows:

(27) 1 + r*t ≡ (1 + rt)/(1 + rt).

In a similar manner, we define the period t anticipated rate of real asset price change i*t

as follows:

(28) 1 + i*t ≡ (1 + it)/(1 + rt).

Recall definition (24), which defined the ex ante time series depreciation of an asset that
is n periods old at the beginning of period t, Dn

t.  The first term in this definition reflects
the price level at the beginning of period t while the second term in this definition reflects
the price level at the end of period t.  We now express the second term in terms of the
beginning of period t price level.  Thus we define the ex ante real time series
depreciation of an asset that is n periods old at the beginning of period t, Pn

t, as follows:

(29) Pn
t ≡ Pn

t - (1+it) Pn+1
t/(1+rt)                                             n = 0,1,2,…

              = Pn
t - (1+it)(1-dn

t) Pn
t /(1+rt)                                    using (12)

              = [(1+rt) - (1+i*t)(1+rt)(1-dn
t)] Pn

t /(1+rt)                using (28)
              = (1-d0

t)(1-d1
t) … (1-dn-1

t)[1 - (1+i*t)(1-dn
t)] P0

t    using (13)
              = (1-d0

t)(1-d1
t) … (1-dn-1

t)[ dn
t - i*t(1-dn

t)] P0
t.

The ex ante real time series depreciation amount Pn
t defined by (29) can be compared to

its cross section counterpart Dn
t, defined by (25) above. Of course, if the real anticipated

asset inflation rate i*t is zero, then (29) and (25) coincide and real ex ante time series
depreciation equals cross section depreciation.

We are now in a position to provide a more satisfactory definition of expected
obsolescence, particularly in the context of high inflation.  We now define expected
obsolescence to be the situation where the real rate of asset price change i*t is negative.
If this real rate is negative, then it can be seen comparing (29) and (26) that

(30) Pn
t > Dn

t       for all n such that Dn
t > 0;

i.e., real anticipated time series depreciation exceeds the corresponding cross section
depreciation provided that i*t is negative.

Thus the general user cost formulae that we have developed from the vintage accounts
point of view can be reconciled to reflect the point of view of national income
accountants. We agree with Hill’s point of view that cross section depreciation is not
really adequate to measure time series depreciation as national income accountants have
defined it since Pigou (1935; 240-241).

Pigou (1924) in an earlier work had a more complete discussion of the obsolescence
problem and the problems involved in defining time series depreciation in an inflationary
environment.  Pigou (1924; 34-35) first pointed out that the national dividend or net
annual income (or in modern terms, real net output) should subtract depreciation or
capital consumption.  Pigou (1924; 39-41) then went on to discuss the roles of
obsolescence and general price change in measuring depreciation. Pigou was responsible
for many of the conventions of national income accounting that persist down to the



18

present day.  He essentially argued that (unanticipated) capital gains or losses be
excluded from income and that the effects of general price level change be excluded from
estimates of depreciation.  He also argued for the inclusion of (foreseen) obsolescence in
depreciation.  Unfortunately, he did not spell out exactly how all of this could be done in
the accounts.  Our algebra above can be regarded as an attempt to formalize these
Pigovian complications.

It should be noted that the early industrial engineering literature also stressed that the
possibility of obsolescence meant that depreciation allowances should be larger than
those implied by mere wear and tear; see Babbage (1835; 285), Matheson (1910; 39-40)
and Church (1917; 192-193).  Both Matheson and Church noted that obsolescence could
arise not only from new inventions but also from shifts in demand.

We will end this section by pointing out another important use for the concept of real
anticipated time series depreciation.  However, before doing this, it is useful to rewrite
equations (5), which define the beginning of period t asset prices by age n, Pn

t, in terms of
the beginning of period t rental prices fn

t, and equations (7), which define the user costs fn
t

in terms of the asset prices Pn
t, using definitions (27) and (28), which define the period t

real interest rate r*t and expected asset inflation rate i*t respectively in terms of the
corresponding nominal rates rt and it and the general inflation rate rt.  Substituting (27)
and (28) into (5) yields the following system of equations:

(31) P0
t = f0

t + [(1+i*t)/(1+r*t)] f1
t + [(1+i*t)/(1+r*t)]2 f2

t + [(1+i*t)/(1+r*t)]3 f3
t + …

        P1
t = f1

t + [(1+i*t)/(1+r*t)] f2
t + [(1+i*t)/(1+r*t)]2 f3

t + [(1+i*t)/(1+r*t)]3 f4
t + …

        …
        Pn

t = fn
t + [(1+i*t)/(1+r*t)] fn+1

t + [(1+i*t)/(1+r*t)]2 fn+2
t + [(1+i*t)/(1+rt)]3 fn+3

t + …

Similarly, substituting (27) and (28) into (7) yields the following system of equations:

(32) f0
t = P0

t - [(1+i*t)/(1+r*t)] P1
t     = (1+r*t)-1 [P0

t (1+r*t) - (1+i*t) P1
t]

        f1
t = P1

t - [(1+i*t)/(1+r*t)] P2
t     = (1+r*t)-1 [P1

t (1+r*t) - (1+i*t) P2
t]

       …
        fn

t = Pn
t - [(1+i*t)/(1+r*t)] Pn+1

t  = (1+r*t)-1 [Pn
t (1+r*t) - (1+i*t) Pn+1

t] ; …

Note that the nominal interest and inflation rates have entirely disappeared from the
above equations.  In particular, the beginning of the period user costs fn

t can be defined in
terms or real variables using equations (32) if this is desired.  On the other hand, entirely
equivalent formulae for the cross section user costs can be obtained using the initial set of
equations (7), which used only nominal variables.  Which set of equations is used in
practice can be left up to the judgment of the statistical agency or the user.36  The point is
that the careful and consistent use of discounting should eliminate the effects of general
inflation from our price variables; discounting makes comparable cash flows received or
paid out at different points of time.

Recall definition (29), which defined Pn
t as the ex ante real time series depreciation of an

asset that is n periods old at the beginning of period t.  It is convenient to convert this
amount of depreciation into a percentage of the initial price of the asset at the beginning

                                                  
36 In particular, it is not necessary for the statistical agency to convert all nominal prices into real prices as a
preliminary step before “real” user costs are calculated.  The above algebra shows that our nominal user
costs fn

t can also be interpreted as “real” user costs that are expressed in terms of the value of money
prevailing at the beginning of period t.
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of period t, Pn
t.  Thus we define the ex ante time series depreciation rate for an asset that

is n periods old at the start of period t, pn
t, as follows:37

(33)  pn
t ≡ Pn

t / Pn
t                                                                     ; n = 0,1,2,…

              = [Pn
t - (1+it) Pn+1

t/(1+rt)] / Pn
t                                   using (29)

              = [Pn
t - (1+it)(1-dn

t) Pn
t /(1+rt)] / Pn

t                          using (12)
              = [1 - (1+i*t)(1-dn

t)]                                                   using (28).

Now substitute definition (12) for the cross section depreciation rate dn
t into the nth

equation of (32) and we obtain the following expression for the beginning of period t user
cost of an asset that is n periods old at the start of period t:

(34) fn
t = (1+r*t)-1 [Pn

t (1+r*t) - (1+i*t) Pn+1
t]                           n = 0,1,2,…

            = (1+r*t)-1 [Pn
t (1+r*t) - (1+i*t)(1-dn

t) Pn
t]                   using (12)

            = (1+r*t)-1 [(1+r*t) - (1+i*t)(1-dn
t)] Pn

t

            = (1+r*t)-1 [r*t + pn
t] Pn

t                                                 using (33).

Thus the period t vintage user cost for an asset that is n periods old at the start of period t,
fn

t, can be decomposed into the sum of two terms.  Ignoring the discount factor, (1+r*t)-1,
the first term is  r*t Pn

t, which represents the real interest cost of the financial capital that
is tied up in the asset, and the second term is  pn

t Pn
t = Pn

t, which represents a concept of
national accounts depreciation.

The last line of (34) is important if at some stage statistical agencies decide to switch
from measures of gross domestic product to measures of net domestic product.  If this
change occurs, then the user cost for each age n of capital, fn

t, must be split up into two
terms as in (34).  The first term, (1+r*t)-1 r*t  Pn

t times the number of units of that type of
capital in use, could remain as a primary input charge while the second term, (1+r*t)-1 pn

t

Pn
t  times the number of units of that age of capital in use, (this is real national accounts

depreciation) could be treated as an intermediate input charge (similar to the present
treatment of imports).  The second term would be an offset to gross investment.38

This completes our discussion of the obsolescence problem.39  In the next section, we turn
our attention to the problem of aggregating across ages of the same capital good.

                                                  
37 To see that there can be a very large difference between the cross section depreciation rate dn

t and the
corresponding ex ante time series depreciation rate pn

t, consider the case of an asset whose vintages yield
exactly the same service for each period in perpetuity.  In this case, all of the vintage asset prices Pn

t would
be identical and the cross section depreciation rates dn

t would all be zero.  Now suppose a marvelous new
invention is scheduled to come on the market next period which would effectively drive the price of this
class of assets down to zero.  In this case, i*t would be - 1 and substituting this expected measure of price
change into definitions (33) shows that the ex ante time series depreciation rates would all equal one; i.e.,
under these conditions, we would have pn

t = 1 and dn
t = 0 for all vintages n.

38 Using this methodology, we would say that capital is being maintained intact  for the economy if the
value of gross investments made during the period (discounted to the beginning of the period) is equal to or
greater than the sum of the real national accounts depreciation terms over all assets.  This is a maintenance
of financial capital concept as opposed to Pigou’s (1935; 235) maintenance of physical capital concept.
39 It should be noted that our discussion of the obsolescence issue only provides an introduction to the many
thorny issues that make this area of inquiry quite controversial.  For further discussion, see Oulton (1995),
Scott (1995) and Triplett (1996) and the references in these papers.
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6. Aggregation over Vintages of a Capital Good

In previous sections, we have discussed the beginning of period t stock price Pn
t of an

asset that is n periods old and the corresponding beginning and end of period user costs,
fn

t and un
t.  The stock prices are relevant for the construction of real wealth measures of

capital and the user costs are relevant for the construction of capital services measures.
We now address the problems involved in obtaining quantity series that will match up
with these prices.

Let the period t -1 investment in a homogeneous asset for the sector of the economy
under consideration be It-1.  We assume that the starting capital stock for a new unit of
capital stock at the beginning of period t is K0

t and this stock is equal to the new
investment in the asset in the previous period; i.e., we assume:

(35) K0
t ≡ It-1.

Essentially, we are assuming that the length of the period is short enough so that we can
neglect any contribution of investment to current production; a new capital good becomes
productive only in the period immediately following its construction.  In a similar
manner, we assume that the capital stock available of an asset that is n periods old at the
start of period t is Kn

t and this stock is equal to the gross investment in this asset class
during period t -n -1; i.e., we assume:

(36) Kn
t ≡ It-n-1 ;                                             n = 0,1,2,…

Given these definitions, the value of the capital stock in the given asset class for the
sector of the economy under consideration (the wealth capital stock) at the start of period
t is

(37) Wt ≡ P0
t K0

t + P1
t K1

t + P2
t K2

t + …
             = P0

t It-1 + P1
t It-2 + P2

t It-3 + …       using (36).

Turning now to the capital services quantity, we assume that the quantity of services that
an asset of a particular age at a point in time is proportional (or more precisely, is equal)
to the corresponding stock.  Thus we assume that the quantity of services provided in
period t by a unit of the capital stock that is n periods old at the start of period t is Kn

t

defined by (36) above.  Given these definitions, the value of capital services for all
vintages of asset in the given asset class for the sector of the economy under
consideration (the productive services capital stock) during period t using the end of
period user costs un

t defined by equations (8) above is

(38) St ≡ u0
t K0

t + u1
t K1

t + u2
t K2

t + …
            = u0

t It-1 + u1
t It-2 + u2

t It-3 + …         using (36).

Now we are faced with the problem of decomposing the value aggregates Wt and St

defined by (37) and (38) into separate price and quantity components.  If we assume that
each new unit of capital lasts only a finite number of periods, L say, then we can solve
this value decomposition problem using normal index number theory.  Thus define the
period t  stock price and quantity vectors, Pt and Kt respectively, as follows:

(39) Pt ≡ [P0
t,P1

t,…,PL-1
t]  ;  Kt ≡ [K0

t,K1
t,…,KL-1

t] = [It-1,It-2,…,It-L-1] ; t = 0,1,…,T.
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Fixed base or chain indexes may be used to decompose value ratios into price change and
quantity change components.  In the empirical work which follows, we have used the
chain principle.40  Thus the value of the capital stock in period t, W t, relative to its value
in the preceding period, Wt-1, has the following index number decomposition:

(40) Wt / Wt-1 = P(Pt-1,Pt,Kt-1,Kt) Q(Pt-1,Pt,Kt-1,Kt) ;      t = 1,2,…,T

where P and Q are bilateral price and quantity indexes respectively.

In a similar manner, we define the period t end of the period user cost  price and quantity
vectors, ut and Kt respectively, as follows:

(41) ut ≡ [u0
t,u1

t,…,uL-1
t]  ;  Kt ≡ [K0

t,K1
t,…,KL-1

t] = [It-1,It-2,…,It-L-1] ; t = 0,1,…,T.

We ask that the value of capital services in period t, St, relative to its value in the
preceding period, St-1, has the following index number decomposition:

(42) St / St-1 = P(ut-1,ut,Kt-1,Kt) Q(ut-1,ut,Kt-1,Kt) ;      t = 1,2,…,T

where again P and Q are bilateral price and quantity indexes respectively.

There is now the problem of choosing the functional form for either the price index P or
the quantity index Q.41  In the empirical work that follows, we used the Fisher (1922)
ideal price and quantity indexes.  These indexes appear to be “best” from the axiomatic
viewpoint42 and can also be given strong economic justifications.43

It should be noted that our use of an index number formula to aggregate both stocks and
services by age is more general than the usual aggregation procedures, which essentially
assume that the different vintages of the same capital good are perfectly substitutable so
that linear aggregation techniques can be used.44  However, as we shall see in subsequent
sections, the more general mode of aggregation suggested here frequently reduces to the
traditional linear method of aggregation provided that the period prices by age all move
in strict proportion over time.

Many researchers and statistical agencies relax the assumption that an asset lasts only a
fixed number of periods, L say, and make assumptions about the distribution of
retirements around the average service life, L.  In our empirical work that follows, for
simplicity, we will stick to the sudden death assumption; i.e., that all assets in the given
asset class are retired at age L.  However, this simultaneous retirement assumption can
readily be relaxed (at the cost of much additional computational complexity) using a
methodology developed by Hulten (1990; 125), where he subdivided a vintage into
subcomponents, each of which had a different expected length of life.

                                                  
40 Given smoothly trending price and quantity data, the use of chain indexes will tend to reduce the
differences between Paasche and Laspeyres indexes compared to the corresponding fixed base indexes and
so chain indexes are generally preferred; see Diewert (1978; 895) for a discussion.
41 Obviously, given one of these functional forms, we may use (40) to determine the other.
42 See Diewert (1992b; 214-223).
43 See Diewert (1976; 129-134).
44 This more general form of aggregation was first suggested by Diewert and Lawrence (2000).  For
descriptions of the more traditional linear method of aggregation, see Jorgenson (1989; 4) or Hulten (1990;
121-127) (1996; 152-165).
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We now have all of the pieces that are required in order to decompose the capital stock of
an asset class and the corresponding capital services into price and quantity components.
However, in order to construct price and quantity components for capital services, we
need information on the relative efficiencies fn

t of the various vintages of the capital input
or equivalently, we need information on cross sectional vintage depreciation rates dn

t in
order to use (42) above.  The problem is that we do not have accurate information on
either of these series so in what follows, we will assume a standard asset life L and make
additional assumptions on the either the pattern of vintage efficiencies or depreciation
rates.  Thus in a sense, we are following the same somewhat mechanical strategy that was
used by the early cost accountants like Daniels (1933; 303).

However, our mechanical strategy is more complex than that used by early accountants in
that we translate assumptions about the pattern of cross section depreciation rates into
implications for the pattern of cross section rental prices and asset prices, taking into
account  the complications induced by discounting and expected future asset price
changes.

In the following sections, we will consider 4 different sets of assumptions and calculate
the resulting aggregate capital stocks and services using Canadian data.  We illustrate
how the various depreciation models differ from each other using annual Canadian data
on two broad classes of asset:45

• machinery and equipment and
• nonresidential structures.

We use Canadian data on gross investment in these two asset classes (in current and in
constant dollars) because it extends back to 1926 and hence capital stocks can be formed
without making arbitrary starting value assumptions.

Our first problem is to decide on the average age of retirement for each of these asset
classes.  One source is the OECD (1993) where average service lives for various asset
classes were reported for 14 OECD countries.  For machinery and equipment (excluding
vehicles) used in manufacturing activities, the average life ranged from 11 years for
Japan to 26 years for the United Kingdom.  For vehicles, the average service lives ranged
from 2 years for passenger cars in Sweden to 14 years in Iceland and for road freight
vehicles, the average life ranged from 3 years in Sweden to 14 years in Iceland.  For
buildings and structures, the average service lives ranged from 15 years (for petroleum
and gas structures in the US) to 80 years for railway structures in Sweden.  Faced with
this wide range of possible lives, we decided to follow the example of Angus Madison
(1993) and assume an average service life of 14 years for machinery and equipment and
39 years for nonresidential structures.  The Canadian data that we used may be found in
Diewert (2004).

We turn now to our first efficiency and depreciation model.

7.  The One Hoss Shay Model of Efficiency and Depreciation

In section 2 above, we noted that Böhm-Bawerk (1891; 342) postulated that an asset
would yield a constant level of services throughout its useful life of L years and then
collapse in a heap to yield no services thereafter.  This has come to be known as the one

                                                  
45 More accurate models would work with more disaggregated investment series.
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hoss shay or light bulb model of depreciation.  Hulten (1990; 124) noted that this pattern
of relative efficiencies has considerable intuitive appeal for many assets.

The basic assumptions of this model are that the period t efficiencies and hence cross
sectional rental prices fn

t are all equal to say ft for ages n that are less than L periods old
and for older ages, the efficiencies fall to zero.  Thus we have:

(43) fn
t = ft       for n = 0,1,2,...,L-1;

            = 0       for n = L, L+1,L+2,....

Now substitute (43) into the first equation in (5) and get the following formula46 for the
rental price ft in terms of the price of a new asset at the beginning of year t, P0

t:

(44) ft = P0
t/[1 + (gt) + (gt)2 + ...+ (gt)L-1]

where the period t discount factor gt is defined in terms of the period t nominal interest
rate rt and the period t expected asset rate of price change it as follows:

(45) gt ≡ (1 + it)/(1 + rt).

Now that the period t rental price ft for an unretired asset has been determined, substitute
equations (43) into equations (5) and determine the sequence of period t asset prices by
age n, Pn

t:

(46) Pn
t = ft [1 + (gt) + (gt)2 + ...+ (gt)L-1-n]     for n = 0,1,2,...,L-1

             = 0                                                      for n = L, L+1,L+2,...

Finally, use equations (8) to determine the end of period t rental prices, un
t, in terms of the

corresponding beginning of period t rental prices, fn
t:

(47) un
t = (1 + rt)fn

t ;                                        n = 0,1,2,...

Given the asset prices defined by (46), we could use equations (12) above to determine
the corresponding cross section depreciation rates dn

t.  We will not table these
depreciation rates since our focus is on constructing measures of the capital stock and of
the flow of services that the stocks yield.

We have data in current and constant dollars for investment in nonresidential structures
and for machinery and equipment in Canada for the years 1926 to 1999 inclusive; see
Diewert (2004) for a description of these data.  As was mentioned in the previous section,
we follow the example set by Maddison (1993) and assume an average service life of 14
years for machinery and equipment and 39 years for nonresidential structures.  Thus 1965
is the first year for which we will have data on all 39 types of nonresidential structures.
Now it is a straightforward matter to use the asset prices by age defined by (46) above
(where L equals 39) and apply (40) in the previous section to aggregate over the 39 types
of nonresidential capital using the Fisher (1922) ideal index number formula and form
aggregate price and quantity series for the nonresidential construction (wealth) capital
stock, PNR

t and KNR
t, for the years 1965-1999.  These series, along with their annual

average (geometric) growth rates, can be found in Diewert (2004) at 5 year intervals.
                                                  
46 This formula simplifies to P0

t[1-(gt)L]/[1-gt] provided that gt is less than 1 in magnitude.  This last
restriction does not hold for our Canadian data, since for some years, it exceeds rt.  However, (44) is still
valid under these conditions.
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Similarly, we use (46) above (where L equals 14) and apply (40) in the previous section
to aggregate over the 14 ages of machinery and equipment using the Fisher ideal index
number formula and form aggregate price and quantity series for the machinery and
equipment  (wealth) capital stock, PME

t and KME
t, for the years 1965-1999.  These series,

along with their annual average (geometric) growth rates, can also be found in Diewert
(2004) at 5 year intervals.  In this first model, we assume that producers exactly anticipate
the asset rates of price change, iNR

t and iME
t, for nonresidential construction and for

machinery and equipment respectively; these ex post rates of price change are listed in
Diewert (2004).  Having constructed the aggregate price and quantity of nonresidential
capital, PNR

t and KNR
t respectively, and the aggregate price and quantity of machinery and

equipment, PME
t and KME

t respectively, we may again use the Fisher ideal formula and
aggregate these two series into a single aggregate price and quantity series for the wealth
stock, which we denote by P(1)t and K(1)t, where the 1 indicates that this is our first
model in a grand total of 12 alternative aggregate capital stock models.

Using equations (43), (44) and (47) along with the data tabled in Diewert (2004), we can
construct the end of the period user costs for each of our 39 types of nonresidential
construction capital.  Now use equation (38) to construct the service flow aggregate for
nonresidential construction for each year.  Then we use (42) in the previous section
(where L equals 39) to aggregate over the 39 types of nonresidential capital using the
Fisher (1922) ideal index number formula and form the aggregate rental price for
nonresidential construction, uNR

t, and the corresponding services aggregate, kNR
t, for the

years 1965-1999.47  These series, along with their annual average (geometric) growth
rates, can be found in Diewert (2004) at 5 year intervals.  Similarly, we use (42) above
(where L equals 14) and aggregate over the 14 ages of machinery and equipment using
the Fisher ideal index number formula and form aggregate capital services price and
quantity series, uME

t and kME
t, for the years 1965-1999.  These series, along with their

annual average (geometric) growth rates, can also be found in Diewert (2004) at 5 year
intervals. Having constructed the aggregate price and quantity of nonresidential capital
services, uNR

t and kNR
t respectively, and the aggregate price and quantity of machinery and

equipment services, uME
t and kME

t respectively, we may again use the Fisher ideal formula
and aggregate these two series into a single aggregate price and quantity series for capital
services, which we denote by u(1)t and k(1)t, where the 1 again indicates that this is our
first model in a grand total of 12 alternative aggregate capital stock models.  The various
data series will be compared graphically in section 11 below.

We turn now to our second one hoss shay depreciation model.  In this model, instead of
assuming that producers correctly anticipate each year’s ex post asset inflation rates, it is
assumed that producers use the current CPI inflation rate as estimators of anticipated
asset inflation rates.  This model turns out to be equivalent to the constant real interest
rate model that is frequently used by statistical agencies.48  In terms of computations, we
simply replace the two ex post asset inflation rates, iNR

t and iME
t, by the CPI inflation rate

rt listed in Diewert (2004) and then repeat all of the computations made to implement
Model 1 above.

                                                  
47 Since all of the vintage rental prices are equal, it turns out that the aggregate rental price is equal to this
common vintage rental price and the service aggregate is equal to the simple sum over the vintages.  This
result is an application of Hicks’ (1939; 312-313) aggregation theorem; i.e., if all prices in the aggregate
move in strict proportion over time, then any one of these prices can be taken as the price of the aggregate.
48 The nominal interest rate is still used in forming the end of the period user costs; otherwise, only real
interest rates are used in this model.
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When we compare the service prices and quantities in Model 1, the perfect foresight
model, with the corresponding service prices and quantities in Model 2, the constant real
interest rate model, a number of things stand out:

• The Model 2 user costs are much less volatile (as could be expected);
• The Model 1 user costs grow much more quickly;
• The Model 2 levels of capital services are much higher but
• The Model 1 and 2 average growth rates for capital services are very similar.

Thus the two models give very different results overall.  The average rate of price increase
for the Model 2 capital services aggregate was 3.29% per year, which is much lower than
the Model 1 estimate of 4.85% per year. On the quantity side, the Model 2 flow of
nonresidential construction capital services increased from $2727 million to $11,564
million (constant 1965) Canadian dollars, for an annual average (geometric) growth rate
of 4.34% while the Model 2 flow of machinery and equipment capital services increased
from $3588 million to $34,556 million (constant 1965) Canadian dollars, for an annual
average growth rate of 6.89%.  The Model 2 capital services aggregate grew at an annual
average growth rate of 5.49% compared to the Model 1 5.61% capital services annual
average growth rate.

We turn now to our third one hoss shay depreciation model.  In this model (Model 3),
instead of assuming that producers correctly anticipate each year’s ex post asset inflation
rates, we assume that they can anticipate the trends in asset inflation rates.  In Diewert
(2004), we describe in detail how these trends were determined.  In terms of
computations, we use exactly the same program that we used to implement Model 1
except that we replace the rather volatile nominal interest rates rt by the smoothed
nominal interest rates that are listed in Diewert (2004).  We also replace the two ex post
asset inflation rates, iNR

t and iME
t, by their smoothed counterparts listed in Diewert (2004).

Comparing the numbers across the three models, there are some small differences
between the capital stocks generated by our three variants of the one hoss shay model of
depreciation but the average growth rates are virtually identical.  There is more variation
across the three models in the movement of the stock prices with Model 1 giving the
highest rate of price growth for the capital aggregate (4.35% per year), followed by
Model 3 (4.17% per year) and then Model 2 (3.97% per year).  The Model 1,2 and 3
aggregate prices, P(1)-P(3), and quantities of capital, K(1)-K(3) respectively, are graphed
in Figures 1-6; see the Figures in section 11 below.

The tremendous volatility of the Model 1 rental prices, u(1), will become evident from
viewing Figure 7.  Thus the use of ex post asset inflation rates as ex ante or anticipated
inflation rates leads to user costs that are extremely volatile.  The Model 3 aggregate user
costs, u(3), while still more volatile than the constant real interest rate user costs, u(2), are
reasonable and smooth out the fluctuations in the u(1) series.  The u(2) series lies below
the other two user cost series because the constant real interest rate user costs make no
allowance for the extra depreciation that arises from the anticipated price declines that are
due to obsolescence; i.e., the u(2) series ignores the systematic real price declines in the
price of machinery and equipment.  Thus while Model 2 is acceptable, we prefer Model
3, since this model includes the effects of anticipated obsolescence, whereas Model 2
does not.

Examination of Figures 4-6 in section 11 shows that all three one hoss shay models give
rise to much the same aggregate capital stocks.  The constant real interest rate capital
stocks K(2) are the biggest, followed by the smoothed anticipated inflation stocks K(3)
and the fully anticipated inflation stocks K(1) are the smallest.  The aggregate capital
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services graphed in Figures 10-12 show much the same pattern but with more dispersion.
The constant real interest rate aggregated capital services k(2) are the biggest, followed
by the smoothed anticipated inflation capital services k(3) and the fully anticipated
inflation capital services k(1) are the smallest.

We turn now to our second model of depreciation and efficiency.

8. The Straight Line Depreciation Model

The straight line method of depreciation is very simple in a world without price change:
one simply makes an estimate of the most probable length of life for a new asset, L
periods say, and then the original purchase price P0

t is divided by L to yield an estimate
of period by period depreciation for the next L periods.  In a way, this is the simplest
possible model of depreciation, just as the one hoss shay model was the simplest possible
model of efficiency decline.49  The use of straight line depreciation dates back to the
1800’s at least; see Matheson (1910; 55), Garcke and Fells (1893; 98) and Canning
(1929; 265-266).

We now set out the equations which describe the straight line model of depreciation in
the general case when the anticipated asset rate of price change it is nonzero.  Assuming
that the asset has a life of L periods and that the cross sectional amounts of depreciation
Dn

t ≡ Pn
t - Pn+1

t defined by (10) above are all equal for the assets in use, then it can be
seen that the beginning of period t vintage asset prices Pn

t will decline linearly for L
periods and then remain at zero; i.e., the Pn

t will satisfy the following restrictions:

(48) Pn
t = P0

t [L - n]/L                                                              n = 0,1,2,...,L
             = 0                                                                                n = L+1,L+2,...

Recall definition (12) above, which defined the cross sectional depreciation rate for an
asset that is n periods old at the beginning of period t, dn

t.  Using (48) and the nth
equation in (13), we have:

(49) (1 - d0
t)(1 - d1

t)…(1 - dn-1
t) = Pn

t / P0
t = 1 - (n/L)           for n = 1,2,...,L.

Using (49) for n and n+1, it can be shown that

(50) (1 - dn
t) = [L - (n+1)]/[L - n]                                           n = 0,1,2,...,L -1.

Now substitute (49) and (50) into the general user cost formula (14) in order to obtain the
period t end of the period straight line user costs, un

t:50

(51) un
t = (1 - d0

t)… (1 - dn-1
t)[(1+rt) - (1+it)(1 - dn

t)] P0
t      n = 0,1,2,...,L -1

             = [1 - (n/L)][(1+rt) - (1+it)([L - (n+1)]/[L - n])] P0
t.

Equations (48) give us the sequence of asset prices by age that are required to calculate
the wealth capital stock while equations (51) give us the user costs by age that are
required to calculate capital services for the asset.  It should be noted that if the
anticipated asset inflation rate it is large enough compared to the nominal interest rate rt,
                                                  
49 In fact, it can be verified that if the nominal interest rate rt and the nominal asset inflation rate i t are both
zero, then the one hoss shay efficiency model will be entirely equivalent to the straight line depreciation
model.
50 The user costs for n = L, L+1,L+2,... are all zero.
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then the user cost un
t can be negative.  This means that the corresponding asset becomes

an output rather than an input for period t.51

At this point, we can proceed in much the same manner as in the previous section. We
use the asset prices defined by (48) above (where L equals 39) and apply (40) in section 7
to aggregate over the 39 types of nonresidential capital using the Fisher (1922) ideal
index number formula and we form aggregate price and quantity series for the
nonresidential construction (wealth) capital stock, PNR

t and KNR
t, for the years 1965-1999.

These series, along with their annual average (geometric) growth rates, can be found in
Diewert (2004) at 5 year intervals.  Similarly, we use (48) above (where L equals 14) and
apply (40) to aggregate over the 14 types of machinery and equipment using the Fisher
ideal index number formula and we form aggregate price and quantity series for the
machinery and equipment  (wealth) capital stock, PME

t and KME
t, for the years 1965-1999.

These series, along with their annual average (geometric) growth rates, can also be found
in Diewert (2004) at 5 year intervals.  In this fourth model, we assume that producers
exactly anticipate the ex post asset rates of price change, iNR

t and iME
t, for nonresidential

construction and for machinery and equipment respectively. Having constructed the
aggregate price and quantity of nonresidential capital, PNR

t and KNR
t respectively, and the

aggregate price and quantity of machinery and equipment, PME
t and KME

t respectively, we
may again use the Fisher ideal formula and aggregate these two series into a single
aggregate price and quantity series for the wealth stock, which we denote by P(4)t and
K(4)t.

Using equations (51) along with the data tabled in Diewert (2004), we can construct the
end of the period user costs for each of our 39 types of nonresidential construction
capital.  Now use equation (38) to construct the service flow aggregate for nonresidential
construction for each year.  Then we use (42) in the previous section (where L equals 39)
to aggregate over the 39 types of nonresidential capital using the Fisher (1922) ideal
index number formula and form the aggregate rental price for nonresidential construction,
uNR

t, and the corresponding services aggregate, kNR
t, for the years 1965-1999.52  These

series, along with their annual average (geometric) growth rates, can be found in Diewert
(2004) at 5 year intervals.  Similarly, we use (42) above (where L equals 14) and
aggregate over the 14 types of machinery and equipment using the Fisher ideal index
number formula and we form aggregate capital services price and quantity series, uME

t

and kME
t, for the years 1965-1999.  These series, along with their annual average

(geometric) growth rates, can also be found in Diewert (2004) at 5 year intervals. Having
constructed the aggregate price and quantity of nonresidential capital services, uNR

t and
kNR

t respectively, and the aggregate price and quantity of machinery and equipment
services, uME

t and kME
t respectively, we may again use the Fisher ideal formula and

aggregate these two series into a single aggregate price and quantity series for capital
services, which we denote by u(4)t and k(4)t.

We turn now to our second straight line depreciation model.   In this Model 5, instead of
assuming that producers correctly anticipate each year’s ex post asset inflation rates, it is
                                                  
51 However, one is led to wonder if the model is reasonable if some vintages of the asset have negative user
costs while other vintages have positive ones.
52 It turned out that some of our rental prices were negative.  This may not be a major theoretical problem
since in this case, the corresponding capital input becomes a net output.  However, the computations were
carried out using the econometrics computer program SHAZAM and the index number option fails when
any price is negative.  In this case, it was necessary to write up a subroutine that would compute the Fisher
indexes when some prices were negative.  The four inner products that are building blocks into the Fisher
indexes must all be positive in order to take the positive square root.  This condition was satisfied by the
data in all cases.
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assumed that producers use the current CPI inflation rate as estimators of anticipated
asset rates of price change.  In terms of computations, we simply replace the two ex post
asset rates of price change, iNR

t and iME
t, by the CPI inflation rate rt listed in Diewert

(2004) and then repeat all of the computations made to implement Model 4 above.

It turns out that the Model 5 constant real interest rate capital stocks (and prices) are
exactly equal to their Model 4 counterparts.  This follows from equations (48), which
describe the pattern of asset prices by age: in both Models 4 and 5 (and 6 to be considered
shortly), these asset prices do not depend on rt or it and hence the resulting asset prices
and capital stocks will be identical.  Hence there is no need to table the capital stocks and
prices for Model 5.  However, the Model 5 user costs and capital service flows by age
(listed in Diewert (2004) at 5 year intervals) are very different from their Model 4
counterparts.

We turn now to our third straight line deprecation model, which we call Model 6.  In this
model, instead of assuming that producers correctly anticipate each year’s ex post asset
inflation rates, we assume that they can anticipate the trends in asset rates of price
change. In terms of computations, we use exactly the same program that we used to
implement Model 4 except that we replace the rather volatile nominal interest rate rt that
is listed in Diewert (2004) by the smoothed nominal interest rate that is listed in Diewert
(2004).  We also replace the two ex post asset inflation rates, iNR

t and iME
t, by their

smoothed counterparts also listed in Diewert (2004).

As mentioned earlier, the Model 6 constant real interest rate capital stocks (and prices)
are exactly equal to their Model 4 counterparts in Table 7.  Hence there is no need to
table the capital stocks and prices for Model 6.  However, the Model 6 vintage user costs
and capital service flows are very different from their Model 4 and 5 counterparts.

On the quantity side, Model 6 gives much the same results as the other two straight line
depreciation models, Models 4 and 5; see Figures 10-12 below for graphs of k(4)-k(6).
In particular, the average annual (geometric) rate of growth of aggregate capital services
for Models 4, 5 and 6 was 5.30 %, 5.08% and 5.24% per year respectively.  However, on
the user cost side, the three models give very different results.  The perfect foresight
model, Model 4, gave the highest annual average growth rate for the aggregate price of
capital services, 4.96% per year, while the constant real interest rate model, Model 5,
gave the lowest average growth rate, 3.61% per year.  The smoothed anticipated prices
model, Model 6, gave an intermediate growth rate for the price of capital services, 4.31%
per year.  As can be seen from Figures 7-9 below, the Model 5 and 6 aggregate user costs
were much smoother than the volatile Model 4 user costs.

We turn now to our third class of depreciation and efficiency models.

9. The Declining Balance or Geometric Depreciation Model

The declining balance method of depreciation dates back to Matheson (1910; 55) at
least.53  In terms of the algebra presented in section 3 above, the method is very simple:
all of the cross sectional vintage depreciation rates dn

t defined by (12) are assumed to be
equal to the same rate d, where d a positive number less than one; i.e., we have for all
time periods t:
                                                  
53 Matheson (1910; 91) used the term “diminishing value” to describe the method.  Hotelling (1925; 350)
used the term “the reducing balance method” while Canning (1929; 276) used the term the “declining
balance formula”.
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(52) dn
t = d ;                                                                 n = 0,1,2,... .

Substitution of (52) into (14) leads to the following formula for the sequence of period t
vintage user costs:

(53) un
t = (1 - d)n-1 [(1+rt) - (1+it)(1 - d)] P0

t ;          n = 0,1,2,...
             = (1 - d)n-1 u0

t                                      ;          n = 1,2,... .

The second set of equations in (53) says that all of the vintage user costs are proportional
to the user cost for a new asset.  This proportionality means that we do not have to use an
index number formula to aggregate over vintages to form a capital services aggregate.
To see this, using (53), the period t services aggregate St defined earlier by (38) can be
rewritten as follows:

(54) St ≡ u0
t K0

t + u1
t K1

t + u2
t K2

t + …
            = u0

t [K0
t + (1 - d) K1

t + (1 - d)2 K2
t + … ]

            = u0
t KA

t

where the period t capital aggregate KA
t is defined as

(55) KA
t ≡ K0

t + (1 - d) K1
t + (1 - d)2 K2

t + …

If the depreciation rate d and the vintage capital stocks are known, then KA
t can readily be

calculated using (55).  Then using the last line of (54), we see that the value of capital
services (summed over all ages), St, decomposes into the price term u0

t  times the quantity
term  KA

t.  Hence, it is not necessary to use an index number formula to aggregate over
ages of the asset using this depreciation model.

A similar simplification occurs when calculating the wealth stock using this depreciation
model.  Substitution of (52) into (13) leads to the following formula for the sequence of
period t asset prices by age n:

 (56) Pn
t = (1 - d)n-1 P0

t ;                                            n = 1,2,... .

Equations (56) say that all of the period t asset prices are proportional to the price of a
new asset.  This proportionality means that again, we do not have to use an index number
formula to aggregate over vintages to form a capital stock aggregate.  To see this, using
(56), the period t wealth aggregate Wt defined earlier by (37) can be rewritten as follows:

(57) Wt ≡ P0
t K0

t + P1
t K1

t + P2
t K2

t + …
             = P0

t [K0
t + (1 - d) K1

t + (1 - d)2 K2
t + … ]

             = P0
t KA

t

where KA
t was defined by (55).  Thus KA

t can serve as both a capital stock aggregate or a
flow of services aggregate, which is a major advantage of this model.54

                                                  
54 This advantage of the model has been pointed out by Jorgenson (1989) (1996b) and his coworkers.  Its
early application dates back to Jorgenson and Griliches (1967) and Christensen and Jorgenson (1969)
(1973).
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There is a further simplification of the model which is useful in applications.  If we
compare equation (55) for period t+1 and period t, we see that the following formula
results using definitions (39):

(58) KA
t+1 ≡ K0

t+1 + (1 - d) KA
t .

Thus the period t+1 aggregate capital stock, KA
t+1, is equal to the investment in new assets

that took place in period t, which is K0
t+1, plus 1 - d times the period t aggregate capital

stock, KA
t.  This means that given a starting value for the capital stock, we can readily

update it just using the depreciation rate d and the new investment in the asset during the
prior period.

We now need to address the problem of determining the depreciation rate d for a
particular asset class.  Matheson (1910; 69-91) was perhaps the first engineer to address
this problem.  On the basis of his experience, he simply postulated some approximate
rates that could be applied, ranging from 3 to 20 per cent.

The algebra corresponding to Matheson’s method for determining d was explicitly
described by the accountant Canning (1929; 276).  Let the initial value of the asset be V0
and let its scrap value n years later be Vn.  Then V0, Vn and the depreciation rate d are
related by the following equation:

(59) Vn = (1 - d)n V0.

Canning goes on to explain that 1 - d may be determined by solving the following
equation:

(60) log (1 - d) = [log Vn - log V0]/n.

It is clear that Matheson used this framework to determine depreciation rates even though
he did not lay out formally the above straightforward algebra.

However, Canning (1929; 276 pointed out that the scrap value, Vn, which is not
determined very accurately from an a priori point of view, is the tail that is wagging the
dog; i.e., this poorly determined value plays a crucial role in the determination of the
depreciation rate.

An effective response to Canning’s criticism of the declining balance method of
depreciation did not emerge until relatively recently when Hall (1971), Beidelman (1973)
(1976) and Hulten and Wykoff (1981a) (1981b) used an entire array of used asset prices
at point in time in order to determine the geometric depreciation rate which best matched
up with the data.55  Another theoretical possibility would be to use information on rental
prices by age of asset in order to deduce the depreciation rate.56

                                                  
55 Jorgenson (1996a) has a nice review of most of the empirical studies of depreciation.  It should be noted
that Beidelman (1973) (1976) and Hulten and Wykoff (1981a) (1996; 22) showed that equation (59) must
be adjusted to correct for the early retirement of assets.  The accountant Schmalenbach (1959; 91) (the first
German edition was published in 1919) also noticed this problem.
56 This possibility is mentioned by Hulten and Wykoff (1996; 15).
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This brings us to our next problem: how should we convert our estimated asset lives of 39
years for structures and 14 years for machinery and equipment into comparable geometric
rates?

One possible method for converting an average asset life, L periods say, into a
comparable geometric depreciation rate is to argue as follows.  Suppose that we believe
that the straight line model of depreciation is the correct one and the asset under
consideration has a useful life of L periods.  Suppose further that investment in this type
of asset is constant over time at one unit per period and asset prices are constant over
time.  Under these conditions, the long run equilibrium capital stock for this asset would
be57:

(61) 1 + [(L-1)/L] + [(L-2)/L] + ... + [2/L] + [1/L] = L(L+1)/2L = (L+1)/2.

Under the same conditions, the long run equilibrium geometric depreciation capital stock
would be equal to the following sum:

(62)  1 + (1-d) + (1-d)2 + ... = 1/[1-(1-d)] = 1/d.

Now find the depreciation rate d which will make the two capital stocks equal; i.e.,
equate (61) to (62) and solve for d.  The resulting d is:

(63)  d = 2/(L+1).

Obviously, there are a number of problematical assumptions that were made in order to
derive the depreciation rate d that corresponds to the length of life L58 but (63) gives us at
least a definite method of conversion from one model to the other.

Since we assumed that the average length of life for nonresidential construction was L
equal to 39 years, applying the conversion formula (63) implies that dNR equals .05; i.e.,
we assume that the declining balance or geometric depreciation rate for nonresidential
construction in Canada is 5%.  Similarly, our assumed life of 14 years for machinery and
equipment translates into a dME equal to a 13 1/3% geometric depreciation rate for this
asset class.

There is one remaining problem to deal with and then we can proceed to table the results
for three geometric depreciation models for Canada.  The problem is this: before 1926,
we do not have reliable investment data but the effects of investments made prior to 1926
                                                  
57 Recall equations (48), which imply that the vintage asset prices are proportional.  Hence Hicks’
Aggregation Theorem will imply that the capital aggregate will be the simple sum on the left hand side of
(61).
58 The two assumptions that are the least justified are: (1) the assumption that the straight line depreciation
model is the correct model to do the conversion and (2) the assumption that investment has been constant
back to minus infinity.  Hulten and Wykoff (1996; 16) made the following suggestions for converting an L
into a d: “Information is available on the average service life, L, from several sources.  The rate of
depreciation for non-marketed assets can be estimated using a two step procedure based on the ‘declining
balance’ formula d =X/L.  Under the ‘double declining balance’ formula, X = 2.  The value of X can be
estimated using the formula X = dL for those assets for which these estimates are available.  In the Hulten-
Wykoff studies, the average value for of X for producer’s durable equipment was found to be 1.65 (later
revised to 1.86).  For nonresidential structures, X was found to be 0.91.  Once X is fixed, d follows for
other assets whose average service life is available.”
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live on forever in the infinite lived geometric depreciation model that we considered in
equations (54) to (58) above.  In the case of machinery and equipment investments made
before 1926, by the time we get to 1965, what is left of the original investments is
negligible.  However, in the case of a $1000 investment in nonresidential structures made
in 1925, $128.50 of it would still be available as a productive input in 1965, assuming a
5% geometric depreciation rate.  Hence we need a method for estimating the geometric
capital stock that is available at the start of 1926 in order to not bias downward our
estimates of the geometric capital stock for nonresidential construction for the period
1965-1999.  We decided to assume that nonresidential investment for the period prior to
1926 grew at the same rate that it grew during the years 1926-1999.59  Thus for the years
1927 to 1999, we took investment in nonresidential construction during the current year
divided by the corresponding investment in the prior year (both in constant dollars) as our
dependent variable and regressed this variable on a constant.  The estimated constant
turned out to be 1.0509.  Hence, for the prior to 1926 period, we assumed that
investments in nonresidential construction grew at the rate g ≡.05; i.e., a 5% growth rate.
Thus if INR

1926 was the investment in 1926, we assumed that the investments in prior years
were:

(64)  INR
1926/(1+g),  INR

1926/(1+g)2,  INR
1926/(1+g)3, ... .

Using assumption (64), we can calculate an estimate of the starting capital stock for
nonresidential construction at the start of 1927 as

(65)   KNR
1927 ≡ INR

1926 {1 + [(1-d)/(1+g)] + [(1-d)/(1+g)]2 + [(1-d)/(1+g)]3 + ... }
                      = INR

1926 {1/(1 - [(1-d)/(1+g)]}
                      = INR

1926 (1 + g)/(g + d)

where g = .05 and d = .05.  Now we can use formula (58) above, starting at the year t =
1927, to build up the capital stock for each of our two asset classes.  For nonresidential
construction, our starting 1927 capital stock was defined by (65) and for machinery and
equipment, it was simply the 1926 investment in machinery and equipment, IME

1926 say.

At this point, we can proceed in much the same manner as in the previous section. We
have already explained how we can use equations (58) to form the aggregate capital
stocks for nonresidential construction and machinery and equipment.  From (57), it can
be seen that the corresponding capital stock price is P0

t, the price of a new vintage at the
beginning of year t.  These series, along with their annual average (geometric) growth
rates, can be found in Table 11 of Diewert (2004) at 5 year intervals.  In this seventh
model, having constructed the aggregate price and quantity of nonresidential capital, PNR

t

and KNR
t respectively, and the aggregate price and quantity of machinery and equipment,

PME
t and KME

t respectively, we may again use the Fisher ideal formula and aggregate these
two series into a single aggregate price and quantity series for the wealth stock, which we
denote by P(7)t and K(7)t.

Comparing the capital stock prices for Model 7 with those of Model 4, we find that these
numbers are exactly the same.  This is because in both the straight line depreciation
model and the geometric model, the price of a new asset acts as the aggregate stock price
over all vintages.  However, when we use the Fisher formula to aggregate the two types
of capital prices together to get either P(4) or P(7), we get slightly different numbers
because the aggregate quantities of the two types of asset differ in the two models.  The
                                                  
59 This method for obtaining a starting value for the geometric capital stock is due to Kohli (1982); see also
Fox and Kohli (1998).
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Fisher ideal aggregate price for these two capital stock components increased from 1 to
3.6243 over this period.  The price of a unit of nonresidential construction capital
increased by 5.08% per year and the price of a unit of machinery and equipment capital
increased by only 1.37% per year on average for Model 7.  The average rate of price
increase for the Model 7 capital aggregate was 3.86% per year.  This should be compared
to the average rate of price increase for the one hoss shay capital aggregate which was
much higher at 4.35% per year.  On the quantity side, the stock of nonresidential
construction capital increased from $32.8 billion to $115.9 billion (constant 1965)
Canadian dollars, for an annual average (geometric) growth rate of 3.78% (3.85% for the
straight line model) while the stock of machinery and equipment capital increased from
$19.1 billion to $199.7 billion (constant 1965) Canadian dollars, for an annual average
growth rate of 7.15% (7.19% for the straight line model).  The Model 7 declining balance
capital aggregate grew at an annual average growth rate of 4.85%.  The corresponding
aggregate growth rates for the one hoss shay and straight line models were 4.95% and
4.88% per year respectively.

We turn now to the service flow part of our seventh model, where we assume that
producers exactly anticipate the asset rates of price change, iNR

t and iME
t, for

nonresidential construction and for machinery and equipment respectively; these ex post
rates are listed in Table A2 of Diewert (2004).  The user cost for a new asset at the start
of period t, u0

t, is defined in equations (53).  Equation (54) shows that this user cost
matches up with the corresponding aggregated over ages capital stock so the
computations are simplified in this model.  Denote these user costs by uNR

t and uME
t for

our two assets and denote the corresponding service aggregates by kNR
t and kME

t

respectively.  We renormalize these series so that both user costs are unity in 1965.60

These series, along with their annual average (geometric) growth rates, can be found in
Table 12 of Diewert (2004) at 5 year intervals. Having constructed the aggregate price
and quantity of nonresidential capital services, uNR

t and kNR
t respectively, and the

aggregate price and quantity of machinery and equipment services, uME
t and kME

t

respectively, we may again use the Fisher ideal formula and aggregate these two series
into a single aggregate price and quantity series for capital services, which we denote by
u(7)t and k(7)t.61

Comparison of the declining balance growth rates with the corresponding straight line
growth rates shows that there are some substantial differences.  For example, the average
annual geometric rate of growth for the user cost of machinery and equipment was 3.40%
per year for the straight line model versus 2.75% per year for the geometric model.  The
geometric model rate of capital services price growth of 4.51% per year should be
compared to the straight line model rate of capital services price growth of 4.96% per
year which in turn can be compared to the average rate of price increase for the one hoss
shay capital services aggregate which was somewhat higher at 4.85% per year.  The use
of ex post asset inflation rates again leads to user costs that are extremely volatile; see
Figure 7 below.  On the quantity side, the Model 7 flow of nonresidential construction
capital services increased from $1916 million to $6764 million (constant 1965) Canadian
dollars, for an annual average (geometric) growth rate of 3.78% while the flow of
machinery and equipment capital services increased from $3069 million to $32,069
million (constant 1965) Canadian dollars, for an annual average growth rate of 7.15%.
The capital services aggregate grew at an annual average growth rate of 5.55% compared
to the 4.85% annual average growth rate for the aggregate capital stock. The geometric
model average rate of capital services growth rate of 5.55% per year can be compared to
                                                  
60 Before normalization, the service flow aggregates kNR

t and kME
t are exactly equal to the corresponding

stock aggregates.  Thus the rates of growth of the corresponding stock and flow variables will be the same.
61 These series are plotted in Figures 7 and 10 below.
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the straight line growth  rate of capital services  of 5.30% per year and to the  average rate
of growth for the one hoss shay capital services aggregate of 5.61% per year.

We turn now to our second geometric depreciation model, which will eliminate the
volatility problem mentioned in the last paragraph.  In this Model 8, instead of assuming
that producers correctly anticipate each year’s ex post asset rates of price change, it is
assumed that producers use the current CPI inflation rate as estimators of anticipated
asset price change.  In terms of computations, we simply replace the two ex post asset
rates of price change, iNR

t and iME
t, by the CPI inflation rate r t listed in Table A2 of

Diewert (2004) and then repeat all of the computations made to implement Model 7
above.

It turns out that the Model 8 constant real interest rate capital stocks (and prices) are
exactly equal to their Model 7 counterparts in Table 11.  This follows from equations
(57), which show that the aggregate (over ages) stock price is equal to the price of a new
asset, which in turn does not depend on our assumptions about interest rates or expected
asset inflation rates. Hence there is no need to table the capital stocks and prices for
Model 8 (or Model 9 below).  However, the Model 8 vintage user costs and capital
service flows are very different from their Model 2 counterparts and slightly different
from their Model 5 counterparts.  Table 13 in Diewert (2004) lists the Model 8 rental
prices and flows of capital services for the geometric depreciation (constant real interest
rate) Canadian capital stocks at 5 year intervals over the period 1965-1999.

The overall annual rate of growth for capital services for the straight line model was
5.08% per year compared to 5.37% per year for the geometric model where both models
assumed constant real interest rates.  This is not a large difference.  In Figures 7 and 8
below, it can be seen that the user costs that correspond to the geometric model with
constant real interest rates, u(8), is much less volatile than the corresponding geometric
model that assumes perfect foresight, u(7).

We turn now to our third geometric deprecation model, which we call Model 9.  In this
model, instead of assuming that producers correctly anticipate each year’s ex post asset
rates of price change, we assume that they can anticipate the trends in these rates. In
terms of computations, we use exactly the same program that we used to implement
Model 7 except that we replace the rather volatile nominal interest rate rt that was listed
in Table A2 of Diewert (2004) by the smoothed nominal interest rate that is listed in
Table A3 of Diewert (2004)..  We also replace the two ex post asset rates of price change,
iNR

t and iME
t, by their smoothed counterparts listed in Table A3 of Diewert (2004).

As mentioned earlier, the Model 9 constant real interest rate capital stocks (and prices)
are exactly equal to their Model 7 counterparts in Table 7.  Hence there is no need to
table the capital stocks and prices for Model 9.  However, the Model 9 vintage user costs
are somewhat different from their Model 7 and 8 counterparts.  Table 14 in Diewert
(2004) lists the Model 9 rental prices and flows of capital services for the Canadian
capital stock at 5 year intervals over the period 1965-1999.

When we compare the two capital services, kNR
t and kME

t across the 3 declining balance
models, they turn out to be identical and hence so are their growth rates.  Hence when we
aggregate across these two assets to form the Model 7,8 and 9 capital services aggregates,
we find that the average annual geometric growth rates are quite similar: 5.55%, 5.37%
and 5.52% respectively.  However, the corresponding rental price series for each type of
asset, uNR

t and uME
t, are no longer identical across the two models.  The geometric

aggregate rental price grew at an annual geometric rate of 3.88% per year while the
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straight line aggregate rental price grew at a 4.31% per year rate.  In Figures 7 and 9
below, it can be seen that the user cost that corresponds to the geometric model with
smoothed asset inflation rates, u(9), is much less volatile than the corresponding
geometric model that assumes perfect foresight, u(7), but the trend in each series is
similar.

We turn now to our fourth and final class of depreciation and relative efficiency models.

10. The Linear Efficiency Decline Model

Recall that our first class of models (the one hoss shay models) assumed that the
efficiency (or cross section user cost) of the asset remained constant over the useful life
of the asset.  In our second class of models (the straight line depreciation models), we
assumed that the cross section depreciation of the asset declined at a linear rate.  In our
third class of models (the geometric depreciation models), we assumed that cross section
depreciation declined at a geometric rate.  Comparing the third class with the second
class of models, it can be seen that geometric depreciation is more accelerated than
straight line depreciation; i.e., depreciation is relatively large for new vintages compared
to older ones.  In this section, we will consider another class of models that gives rise to
an accelerated pattern of depreciation: the class of models that exhibit a linear decline in
efficiency.62

It is relatively easy to develop the mathematics of this model.  Let f0
t be the period t rental

price for an asset that is new at the beginning of period t.  If the useful life of the asset is
L years and the efficiency decline is linear, then the sequence of period t cross sectional
user costs fn

t is defined as follows:

(66) fn
t ≡ f0

t [L - n]/L ;                                               n = 0,1,2,...,L - 1 ;
             ≡ 0                  ;                                               n = L,L+1,L+2, ... .

Now substitute (66) into the first equation in (5) and get the following formula for the
rental price f0

t in terms of the price of a new asset at the beginning of year t, P0
t:

(67) f0
t = LP0

t/[L + (L-1)(gt) + (L-2)(gt)2 + ...+ 1(gt)L-1]

where the period t discount factor gt is defined in terms of the period t nominal interest
rate rt and the period t expected asset rate of price change it in the usual way:

(68) gt ≡ (1 + it)/(1 + rt).

Now that f0
t has been determined, substitute (67) into (66) and substitute the resulting

equations into equations (5) and determine the sequence of period t asset prices by age n,
Pn

t:

(69) Pn
t = P0

t [(L-n) + (L-n-1)(gt) + ...+ 1(gt)L-1-n]/[L + (L-1)(gt) + ...+ 1(gt)L-1]
                                                                        for n = 0,1,2,...,L-1
             = 0                                                      for n = L, L+1,L+2,... .

Finally, use equations (8) to determine the end of period t rental prices, un
t, in terms of the

corresponding beginning of period t rental prices, fn
t:

                                                  
62 Diewert (2004) showed how linear efficiency decline models can be derived from one hoss shay models
where maintenance expenditures are expected to increase linearly over time.
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(70) un
t = (1 + rt)fn

t ;                                        n = 0,1,2,...

Given the asset prices by age n defined by (69), we could use equations (12) above to
determine the corresponding cross section depreciation rates dn

t.  We will not table these
depreciation rates since our focus is on constructing measures of the capital stock and of
the flow of services that the stocks yield.  However, we will note that if we recall
definition (10) for the period t cross section depreciation of an asset of vintage n, Dn

t ≡ Pn
t

- Pn+1
t, and assume that the nominal interest rate rt and the nominal asset rate of price

change it are both zero, then using (69), it can be shown that

(71) Dn
t ≡ Pn

t - Pn+1
t = P0

t [L - n]/[L(L+1)/2]    for n = 0,1,2,...,L;

i.e., when rt = it = 0, depreciation declines at a linear rate for the linear efficiency decline
model.  When depreciation declines at a linear rate, the resulting formula for depreciation
is called the sum of the year digits formula.63  Thus just as the one hoss shay and straight
line depreciation models coincide when rt = it = 0, so too do the linear efficiency decline
and sum of the digits depreciation models coincide.

In our tenth Model, we assume that producers exactly anticipate the asset rates of price
change, iNR

t and iME
t, for nonresidential construction and for machinery and equipment

respectively. We use the Fisher ideal index to aggregate over ages using formula (69)
above for the asset prices by age.  Having constructed the aggregate price and quantity of
nonresidential capital, PNR

t and KNR
t respectively, and the aggregate price and quantity of

machinery and equipment, PME
t and KME

t respectively, we may again use the Fisher ideal
formula and aggregate these two series into a single aggregate price and quantity series
for the wealth stock, which we denote by P(10)t and K(10)t. The average rate of price
increase for the linear efficiency decline capital stock aggregate was 4.13% per year,
which is lower than the corresponding rate of aggregate price increase for the one hoss
shay aggregate of 4.35% per year; see Table 15 in Diewert (2004).  On the quantity side,
the stock of nonresidential construction capital increased from $29.6 billion to $98.5
billion (constant 1965) Canadian dollars, for an annual average (geometric) growth rate
of 3.60% while the stock of machinery and equipment capital increased from $15.0
billion to $166.6 billion (constant 1965) Canadian dollars, for an annual average growth
rate of 7.33%.  Of course the levels of the capital aggregate are only about 2/3 to 3/4 of
the corresponding one hoss shay levels due to the accelerated form of depreciation for the
former model.  The linearly declining efficiency capital aggregate grew at an annual
average growth rate of 4.74%, which is lower than the corresponding rate of growth for
the one hoss shay aggregate of 4.95%.

Using equations (66), (67) and (70) along with the data tabled in Tables A1 and A2 of
Diewert (2004), we can construct the end of the period user costs for each of our 39 types
of nonresidential construction capital.  As usual, use equation (38) to construct the
service flow aggregate for nonresidential construction for each year.  Then we use (42)
(where L equals 39) to aggregate over the 39 types of nonresidential capital using the
Fisher (1922) ideal index number formula and form the aggregate rental price for
nonresidential construction, uNR

t, and the corresponding services aggregate, kNR
t, for the

years 1965-1999.64  These series, along with their annual average (geometric) growth
rates, can be found in Table 16 of Diewert (2004) at 5 year intervals.  Similarly, we use
                                                  
63 Canning (1929; 277) describes the method in some detail so it was already in common use by that time.
64 Since all of the rental prices by age of asset are proportional to each other, again Hicks’ (1939; 312-313)
aggregation theorem implies that all of the usual indexes are equal to each other.
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(42) above (where L equals 14) and aggregate over the 14 types of machinery and
equipment using the Fisher ideal index number formula and form aggregate capital
services price and quantity series, uME

t and kME
t, for the years 1965-1999.  These series,

along with their annual average (geometric) growth rates, can also be found in Table 16
of Diewert (2004) at 5 year intervals. Having constructed the aggregate price and quantity
of nonresidential capital services, uNR

t and kNR
t respectively, and the aggregate price and

quantity of machinery and equipment services, uME
t and kME

t respectively, we may again
use the Fisher ideal formula and aggregate these two series into a single aggregate price
and quantity series for capital services, which we denote by u(10)t and k(10)t.65

Table 16 in Diewert (2004) shows that the price of a unit of nonresidential construction
capital services increased by 6.32% per year and the price of a unit of machinery and
equipment capital services increased by 2.54% per year on average.  The average rate of
price increase for the linearly declining efficiency capital services aggregate was 4.32%
per year, which is much less than the corresponding rate of price increase for the one hoss
shay aggregate capital services price, which was 4.85% per year.  On the quantity side,
the flow of nonresidential construction capital services increased from $2066 million to
$7467 million (constant 1965) Canadian dollars, for an annual average (geometric)
growth rate of 3.85% while the flow of machinery and equipment capital services
increased from $3162 million to $33,554 million (constant 1965) Canadian dollars, for an
annual average growth rate of 7.19%.  The capital services aggregate grew at an annual
average growth rate of 5.56% compared to the 5.61% annual average growth rate for the
corresponding one hoss shay capital services.  As usual, the linear efficiency decline user
costs u(10) that are based on the assumption of perfect foresight are very volatile; see
Figure 7.

We turn now to our second linear efficiency decline model, which will eliminate the
volatility problem mentioned in the last paragraph.  In this Model 11, instead of assuming
that producers correctly anticipate each year’s ex post asset rates of price change, it is
assumed that producers use the current CPI inflation rate as estimators of these rates.
This model turns out to be equivalent to the constant real interest rate model. As usual, in
terms of computations, we simply replace the two ex post asset rates of price change, iNR

t

and iME
t, by the CPI inflation rate rt listed in Table A2 of Diewert (2004) and then repeat

all of the computations made to implement Model 10 above.

The Model 11 capital stock quantities are very similar to the Model 10 quantities.  The
overall average growth rate for the price of the aggregate stock is a bit higher for Model
10 (4.13% per year) than for Model 11 (3.94% per year).

The one hoss shay capital services aggregate that assumes constant real interest rates,
k(2), is quite close to the linear efficiency decline capital services aggregate that assumes
constant real interest rates, k(11), and their average annual geometric growth rates are
also close: 5.49% for k(2) versus 5.43% for k(11).  However, k(11) is 15 to 20% bigger
in levels than the first linear efficiency decline capital services aggregate k(10), which
assumed that anticipated asset inflation rates were equal to ex post rates.  The average
annual geometric growth rate for k(10) was somewhat higher at 5.56% per year.

We turn now to our third linear efficiency decline model.  In this model (Model 12),
instead of assuming that producers correctly anticipate each year’s ex post asset rates of
price change, we assume that they can anticipate the trends in these rates.  In terms of
computations, we use exactly the same program that we used to implement Model 10

                                                  
65 These series are plotted in Figures 7 and 10 in section 11.
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except that we replace the rather volatile nominal interest rates rt that are listed in Table
A2 of Diewert (2004) by the smoothed nominal interest rates that are listed in Table A3
of Diewert (2004).  We also replace the two ex post asset inflation rates, iNR

t and iME
t, by

their smoothed counterparts listed in Table A3 of Diewert (2004).  It turns out that there
are some small differences between the capital stocks generated by our three variants of
the linear efficiency decline model but the average growth rates are virtually identical.
There is more variation across the three models in the movement of the stock prices with
Model 10 giving the highest rate of price growth for the capital aggregate (4.13% per
year), followed by Model 12 (4.04% per year) and then Model 11 (3.94% per year).
However, there are large differences in the levels and small differences in the growth
rates for capital services generated by the 3 models: the average annual geometric growth
rates for k(10), k(11) and k(12) are  5.56%, 5.43% and 5.55% per year.  The average
annual geometric growth rates for K(10), K(11) and K(12) are  4.74%, 4.72% and 4.74%
per year respectively.  However, there is much more variation across the three models in
the movement of the service prices with Model 10 giving the highest rate of price growth
for the capital services aggregate (4.32% per year), followed by Model 12 (3.78% per
year) and then Model 11 (3.27% per year).

Viewing Figures 7-9, the aggregate linear efficiency decline user cost series u(10), which
assumes that anticipated asset inflation rates are equal to the actual ex post rates, is the
highest very volatile curve. Smoothing these volatile asset inflation rates leads to the
u(12) curve, which is much smoother and captures the trend in u(10).  The constant real
interest rate user cost series, u(11), lies far below the other two aggregate user cost series
for much of the sample period.

Figures 10-12 plot the three linear efficiency decline aggregate capital services series,
k(10)-k(12).  Each of these series is reasonably smooth but note that they are spread out
much more than the corresponding aggregate capital stock series, K(10)-K(12), that are
plotted in Figures 4-6.  Thus the different assumptions on anticipated asset price
movements generate substantially different measures of capital services for these linear
efficiency decline models.  The constant real interest rate series, k(11), is the top curve,
followed by the smoothed asset inflation rates model, k(12), and the ex post asset
inflation rates model, k(10), is the lowest curve.

In the following section, we make some graphical comparisons across our 12 models.

11. A Comparison of the Twelve Models

In this section, we will compare stock prices and user costs  across our four types of
model that are based on alternative assumptions about the structure of depreciation or
asset efficiency, holding constant our assumptions about nominal interest rates and
anticipated asset price movements.  We will also compare capital stocks and service
flows across depreciation and relative efficiency models, holding constant our
assumptions about nominal interest rates and anticipated asset price movements.

Figure 1 plots the aggregate capital stock prices generated by our four depreciation and
efficiency models, assuming that ex post asset price movements are perfectly anticipated.
Note the volatility of these series.  The one hoss shay stock prices P(1) are the highest,
followed by the linear efficiency decline prices P(10).  The straight line and geometric
depreciation prices, P(4) and P(7), are the lowest and are very close to each other.

Figure 2 plots the aggregate capital stock prices generated by our four depreciation and
efficiency models, assuming that ex post asset price changes are equal to changes in the
consumer price index.  This model assumes a constant real interest rate of 4 per cent.



39

These stock prices are much smoother than those exhibited in Figure 1 and they are also
much closer to each other.  The one hoss shay and linear efficiency decline prices, P(2)
and P(11), are virtually indistinguishable on the top, followed by the straight line
depreciation prices P(5) and then followed very closely by the geometric stock prices
P(8).

Figure 3 plots the aggregate capital stock prices generated by our four depreciation and
efficiency models, assuming that anticipated asset price changes are equal to smoothed ex
post asset price changes.  These stock price series smooth out considerably the much
rougher series exhibited in Figure 1. The one hoss shay stock prices P(3) are the highest,
followed by the linear efficiency decline prices P(12).  The straight line and geometric
depreciation prices, P(6) and P(9), are the lowest and are very close to each other.

Figure 4 plots the aggregate capital stocks that correspond to the perfectly anticipated
asset prices assumption for the four depreciation models.  The one hoss shay capital stock
curve K(1) is the highest, followed by the straight line depreciation curve K(4), which in
turn is followed by the geometric depreciation curve K(7).  The linear efficiency decline
stock K(10) is the lowest curve.  These results are intuitively plausible: the one hoss shay
model has the least accelerated form of depreciation, followed by the straight line model,
followed by the geometric depreciation model and the linear efficiency decline model
generates the most accelerated form of depreciation.  In an economy where investment is
growing over time, the capital stocks corresponding to the least accelerated form of
depreciation will grow the quickest, followed by the more accelerated forms and the
capital stock corresponding to the most accelerated form of depreciation will grow the
slowest.  Figures 5 and 6 plot the aggregate capital stocks that correspond to the constant
real interest rate and the smoothed asset price models: the results are much the same as
those exhibited in Figure 4.

Figure 7 plots the aggregate user costs generated by our four classes of depreciation and
efficiency models, assuming that ex post asset price movements are perfectly anticipated.
Note that the user cost series in Figure 7 are even more volatile than the capital stock
prices charted in Figure 1.  The one hoss shay and straight line depreciation user costs,
u(1) and u(4), are the highest, followed by the geometric depreciation and linear
efficiency decline user costs, u(7) and u(10).

Figure 8 plots the aggregate user costs generated by our four classes of depreciation and
efficiency models, assuming that ex post asset price changes are equal to changes in the
consumer price index.  This model assumes a constant real interest rate of 4 per cent.
These user costs are much smoother than those exhibited in Figure 7 and they are also
much closer to each other.  The straight line depreciation user costs u(5) are on top,
followed by the one hoss shay, geometric and linear efficiency decline user costs, u(2),
u(8) and u(11), which are too close to each other to be distinguished visually.

Figure 9 plots the aggregate user costs generated by our four classes of depreciation and
efficiency models, assuming that anticipated asset price changes are equal to smoothed ex
post asset price changes.  These user cost series smooth out considerably the much
rougher series exhibited in Figure 7.  The straight line and one hoss shay user costs, u(6)
and u(3), are very close to each other on top but near the end of our sample period, the
one hoss shay user costs u(3) dip below the straight line depreciation user costs u(6).  The
geometric depreciation and linear efficiency decline user costs, u(9) and u(12), are fairly
close to each other on the bottom.  These two models represent the most accelerated
forms of depreciation.
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Figures 10 and 11 plot the aggregate capital services that correspond to the perfectly
anticipated asset price change and the constant real interest rate models.  The aggregate
services using ex post asset price changes plotted in Figure 10 are more volatile and more
widely dispersed than the aggregate services plotted in Figures 11 and 12, as one might
expect.  The linear efficiency decline services are the top curve k(10), followed by the
geometric depreciation services k(7), followed by the one hoss shay services k(1) and the
straight line depreciation capital services k(4) are the bottom curve. The aggregate
services using constant real interest rates plotted in Figure 11 are fairly similar to the
smoothed capital services exhibited in Figure 12.  For the constant real interest rate
services in Figure 11, the one hoss shay and linear efficiency decline services, k(2) and
k(11), are at the top followed very closely by the geometric depreciation services k(8)
and the straight line depreciation capital services k(5) are the bottom curve.  Figure 12
plots the aggregate capital services that correspond to the smoothed asset price change
model; i.e., Figure 12 is the quantity counterpart to Figure 9.  The linear efficiency
decline capital services curve k(12) is the highest, followed closely by the geometric
depreciation and one hoss shay curves, k(9) and k(3), which are very close to each other.
The straight line depreciation curve k(6) is the lowest curve and is well below the other
three curves.    Thus overall, three of our four depreciation and efficiency models give
rise to much the same measures of capital services, holding constant the assumptions
about asset price changes and the reference interest rate.  However, the straight line
depreciation capital services seem to be consistently below the corresponding services
generated by the other three classes of models.

Our conclusion at this point is that both the form of depreciation that is assumed (light
bulb, straight line, geometric or linear efficiency decline) and the assumptions on interest
rates and price expectations (perfect foresight, constant real rate or anticipated capital
gains) matter.  This means it will be necessary for statistical agencies to introduce
surveys to determine when assets are retired or sold and it will be necessary for
economists to decide what is the “best” set of assumptions concerning the nominal
opportunity cost of capital and anticipated asset price changes.

12. The Treatment of Intangible Assets

Since this volume is primarily concerned with the treatment of intangible assets, we
devote this section to indicating how the above treatment of tangible assets can be
modified to deal with intangible assets.

Examples of expenditures on intangible assets are advertising and marketing expenses
and research and development expenditures.  Both of these categories of expenditures
have the character that the present period outlays will create incremental revenues in the
future for the firm that undertakes them.  These current period expenditures on intangible
assets have a different character than expenditures on tangible durable inputs, which can
be used for a number of  periods and then sold to other users.66  The problem in this
section is to determine how to allocate the cost outlays on intangible investments over
future periods.  Thus the accounting problems in the present section have a different
character than in the previous sections, where a straightforward opportunity cost

                                                  
66 In many cases, the stream of future revenues created by an intangible investment can be sold on the
marketplace (e.g., patents, trademarks and franchises), but this still does not solve the problem of how to
distribute the intangible investment costs over future periods.
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approach was used.  In the present section, the approach taken is one of matching current
costs with future expected revenues.67

To fix ideas, suppose that in period t, a firm has made expenditures on creating an
intangible asset, which are equal to Ct:

(72) Ct ≡ Âm=1
M Pm

tQm
t

where Pm
t is the period t price for the mth type of input that is used to create the

intangible asset and Qm
t is the corresponding quantity purchased.  These expenditures in

period t are expected to generate a future stream of incremental revenues for the firm.
Let R0

t denote the immediate period t incremental revenues (which could be zero) and let
Rn

t denote the incremental revenues that the period t expenditures Ct are expected to
generate n periods from the present period t, for n = 1,2,…  Let rt be the (nominal) period
t opportunity cost of financial capital.68  Then the discounted value of these expected
incremental revenues is:

(73) Rt ≡ R0
t + R1

t/(1+rt) + R2
t/(1+rt)2 + R3

t/(1+rt)3 + …

The problem is to allocate the current period cost Ct over future periods.  Thus let Cn
t be

the allocation of Ct to the accounting period that is n periods after period t for n =
0,1,2,…  At first sight, it seems reasonable that these future cost allocations Cn

t should
sum to Ct.  However, this turns out not to be so reasonable: costs that are postponed to
future periods must be escalated by the (nominal) interest rate rt, so that the present value
of discounted future costs is equal to the actual period t costs Ct.  Thus the intertemporal
cost allocations Cn

t should satisfy the following equation:

(74) Ct = C0
t + C1

t/(1+rt) + C2
t/(1+rt)2 + C3

t/(1+rt)3 + …

To see why discounting is necessary, consider the following simple example where we
invest Ct during the present period and we anticipate the revenue R2

t two periods from
now.  The expected discounted profits that this investment will generate are:

(75) P ≡ -Ct + R2
t/(1+rt)2.

The period by period cash flows for this project are -Ct, 0, R2
t.  We want to match the

period t cost Ct with the period t+2 revenue flows.  Thus we want to convert the cash
flow stream -Ct, 0, R2

t into an equivalent cash flow stream 0, 0, -C2
t + R2

t.  If we choose

(76) C2
t ≡ Ct(1+rt)2,

then it can be seen that these two cash flow streams have the same present value and C2
t

is the “right” period t+2 cost allocation.  Put another way, if we simply carried forward
the period t costs Ct and set C2

t  equal to Ct, we would be neglecting the fact that the costs
took place in period t while the return on the investment was deferred until period t+2 and
hence, we need to charge the opportunity cost of financial capital for two periods on the
initial investment (for two periods) until it is expensed in period t+2.

                                                  
67 Paton and Littleton (1940; 123) argued that the primary purpose of accounting is to match costs and
revenues.  For an excellent early discussion on the importance of matching costs to future revenues, see
Church (1917; 193).
68 Thus for simplicity, we are making assumption (4) in section 2.
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How should the intertemporal cost allocations Cn
t be chosen?  It is natural to make these

cost allocations proportional to the corresponding period anticipated revenues.  Thus
choose the number a so that the following equation is satisfied:

(77) Ct = aRt.

Thus we set the observed period t cost associated with the intangible investment Ct equal
to the constant a times the discounted value of the anticipated incremental revenue
stream Rt that the investment is expected to yield.69

Typically, a will be equal to or less than one, since otherwise, the period t intangible
investment expenditures Ct should not be undertaken.  If a is less than one, then there
will be an expected profit above the opportunity cost of capital, which could be some
form of monopoly profit or a reward for risk taking.

Once a has been determined by solving (77), then the intertemporal cost allocations Cn
t

can be defined to be proportional to the corresponding anticipated incremental revenues
Rn

t for future periods:

(78) Cn
t ≡ aRn

t ;                                                                n = 0,1,2,…

At this point, it is possible to use the algebra developed in sections 2 and 3 above with
some slight modifications.  We can convert the nominal cost allocation factors Cn

t into
constant (period t) dollar cost allocations fn

t as follows:

(79) fn
t ≡ Cn

t/(1+rt)n
 ;                                                        n = 0,1,2,…

            = aRn
t/(1+rt)n

where rt is the period t consumer price inflation rate, which is expected to persist into the
future.70  The fn

t defined by (79) are the counterparts to the period t cross sectional rental
prices that were defined in section 2.  Once these intertemporal constant dollar cost
allocation factors fn

t have been defined by (79), we can use equations (5) in section 2 to
define the sequence of constant dollar asset values71, P0

t, P1
t, P2

t, …, except that the period
t expected rate of asset price change it in equations (5) is replaced by the consumer price
index inflation rate rt.  If we then make use of (18), which expresses the nominal interest
rate rt in terms of the real rate r*t and the CPI inflation rate rt, so that 1+rt = (1+rt)(1+r*t),
then equations (5) simplify to the following equations:

(80) Ct = P0
t = f0

t + f1
t/(1+r*t) + f2

t/(1+r*t)]2 + f3
t/(1+r*t)]3  + …

               P1
t = f1

t + f2
t/(1+r*t) + f3

t/(1+r*t)]2 + f4
t/(1+r*t)]3  + …

               P2
t = f2

t + f3
t/(1+r*t) + f4

t/(1+r*t)]2 + f5
t/(1+r*t)]3  + …

The sequence of constant dollar “asset” values Ct = P0
t, P1

t, P2
t, … shows how the period t

intangible investment can be written down over time in constant period t dollars and
equations (10) and (12) in section 3 show how a sequence of constant dollar depreciation
rates dn

t for the intangible investment can be obtained from the sequence of constant

                                                  
69 Of course, the practical problem that the national income accountant will face is: how can the future
stream of incremental revenues be estimated?
70 This expectational assumption could be relaxed at the cost of more notational complexity.
71 Note that P0

t is equal to Ct.
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dollar “asset” values, Pn
t.72  These depreciation rates dn

t can also be applied to the
investment components Qm

t to form estimated constant dollar input stocks for the
intangible investments.73  Thus the assumptions made about the shape of the anticipated
future period incremental revenues generated by the intangible investment,74 along with
the matching of costs to revenues methodology, determine the pattern of depreciation that
can be used to write down these costs associated with the intangible investment over
time.75

The period t  beginning of the period  and end of period user cost charges, f0
t and u0

t

respectively, for the intangible investment have the following forms:

(81) f0
t ≡ P0

t - [(1+rt)/(1+rt)]P1
t

            = P0
t - P1

t/(1+r*t)
            = [P0

tr*t + D0
t]/(1+r*t);

(82) u0
t ≡ P0

t(1+rt) - (1+rt)P1
t

             = (1+rt)[ P0
tr*t + D0

t]

The above two formulae show that the period t “user costs” for the intangible investment
does not consist solely of a depreciation charge, D0

t: there are also real interest rate
charges that must be added to the depreciation term.

It should be noted that the cost allocation model outlined above can be applied to other
forms of “assets”; namely, deferred charges, prepaid expenses76 and transfer fees when a
reproducible asset is acquired.  The one hoss shay form of revenue matching is probably
the preferred method for dealing with this type of “asset”.

13. Conclusion

We have considered the problems involved in constructing price and quantity measures
for both the capital stock and the flow of services yielded by the stock in an inflationary
environment.  In order to accomplish these tasks, the statistician will have to make
decisions in a number of dimensions:

• What length of life L best describes the asset?
• What form of depreciation or asset efficiency is appropriate?
                                                  
72 If the assumptions on the anticipated (real) incremental revenues are such that the fn

t decline at the
geometric depreciation rate d, then this rate will carry over to Pn

t; i.e., we will have Pn
t = (1-d)n Ct for n =

0,1,2,… if fn
t = (1-d)n f0

t for n = 1,2,…
73 It is not necessary for the statistical agency to do this but some users will be interested in the resulting M
asset stocks that form capital stock aggregates of the Qm

t.  Normal index number theory can be used to
aggregate these M stock components into an overall capital stock aggregate using the period t flow prices
Pm

t as price weights.
74 Thus the specific depreciation models presented in sections 7-10 can be adapted to the present context.
75 It should be noted that the obsolescence problems discussed in section 5 do not occur in the present
context because the asset inflation rate and the CPI inflation rate coincide.  However, obsolescence
problems can still occur when technical progress causes expectations about future incremental revenues to
be revised downwards.
76 Hatfield (1927; 16) gives several examples of this type of asset, including insurance payments which
apply to multiple accounting periods, the stripping away of surface rock for a strip mine and prepaid
expenses.  Hatfield (1927; 18) notes that this type of asset is different from the usual sort of tangible asset
since this type of asset cannot readily be converted into cash; i.e., it has no opportunity cost value.
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• What assumptions should be made about the reference interest rate and the treatment
of anticipated asset price change?

In this paper, we focused on the last two questions.  We considered four classes of
depreciation or efficiency and three types of assumption on the nominal interest rate rt

and on the anticipated asset rate of price change, it, giving 12 models in all.  We
evaluated these 12 models using aggregate Canadian data on two asset classes over the
period 1926-1999.  We found that the assumptions on the form of depreciation or asset
efficiency by age were less important than the assumptions made about the reference
interest rate and the treatment of anticipated asset price changes.77

We consider the third question above first.  In order to answer this question, it is
necessary to ask about the purpose for which the capital data will be used.  For some
purposes, it may be useful to use ex post asset price changes as anticipated price changes.
For example, this approach may be useful in constructing estimates of taxable business
income if capital gains are taxable.  It may also be useful if we want to evaluate the ex
post efficiency of a firm, industry or economy.  However, for most other uses, assuming
that anticipated price changes are equal to actual ex post price changes is very
unsatisfactory since it is unlikely that producers could anticipate all of the random noise
that seems to be inherent in series of actual ex post asset price changes.  Moreover, this
approach generates tremendous volatility in user costs and statistical agencies would face
credibility questions if this approach were used.

Thus we restrict our attention to the choice between assuming a constant real interest rate
or using smoothed ex post asset price changes as estimates of anticipated asset price
changes.  The assumption of constant real interest rates has a number of advantages:

• The resulting price and quantity series tend to be very smooth.
• The estimates are reproducible; i.e., any statistician given the same basic price and

quantity data along with an assumed real interest rate will be able to come up with
the same aggregate price and quantity measures.

However, the use of smoothed ex post asset price changes as measures of anticipated
asset price changes has some advantages as well:

• Longer run trends in relative asset prices can be accommodated.
• The anticipated obsolescence phenomenon can be captured.

Each individual statistical agency will have to weigh the costs and benefits of the two
approaches in order to decide which approach to use.  I think that for most assets, it
would be quite acceptable to use the constant real interest rate model and this would
maximize reproducibility.  However, with assets that have experienced rapid technical
progress, I would prefer to use the smoothed expectations model, since this model will
better capture obsolescence effects.  I would also use the smoothed expectations model
for land, since over long periods, land prices tend to appreciate faster than the general
price level.

We now discuss which of our four sets of assumptions on the form of depreciation or
vintage asset efficiency decline is “best”.

                                                  
77 Harper, Berndt and Wood (1989) also found that differing assumptions on rt and i t made a big difference
empirically using U.S. data.  However, they considered only geometric depreciation.  Our paper can be
viewed as an extension of their work to consider also variations in the form of depreciation.
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The one hoss shay model of efficiency decline, while seemingly a priori attractive, does
not seem to work well empirically; i.e., vintage depreciation rates tend to be much more
accelerated than the rates implied by the one hoss shay model.  If maintenance costs are
linearly rising over time, a “gross” one hoss shay model gives rise to a linearly declining
efficiency model,78 which of course, is a model that exhibits very accelerated
depreciation.

The straight line depreciation model, while not as inconsistent with the data as the one
hoss shay model, also does not generate the pattern of accelerated depreciation that seems
to characterize many used asset markets.  However, given the simplicity of this model (to
explain to the public), it could be used by statistical agencies.

The geometric depreciation model seems to be most consistent with the empirical studies
on used assets of the four simple classes of model that we considered.79  Of course,
geometric depreciation has the disadvantage that it will never exhaust the full value of the
asset.80

Finally, a good alternative to the geometric depreciation model is the linear efficiency
decline model.  However, this model may have a pattern of “over-accelerated”
depreciation relative to the geometric model.  What is required is more empirical work so
that the actual pattern of depreciation can be determined.  In particular, statistical
agencies need to consider establishing capital asset surveys, which would ask firms not
only what assets they purchased during the reference period, but also what assets they
sold or scrapped during the reference period.81

We conclude by noting some limitations of the analysis presented in this paper:

• We have not dealt in great detail with the problems posed by unique assets, although
the model presented in the previous section could be used.

• We have not dealt with the problems posed by assets that depreciate by use rather
than by age.82

• We have neglected property taxes, income taxes and insurance premiums as
additional components of user costs.

• We have neglected the problems posed by indirect commodity taxes on investment
goods; this complication can lead to differences between investment prices and asset
stock prices.

• We have neglected many forms of capital in our empirical work including
inventories, land, knowledge capital (except for our brief discussion in the previous
section), resource stocks and infrastructure capital.

• We have not discussed the many complexities involved in making quality
adjustments for new types of capital.

• We have not discussed the problems posed by establishment deaths on asset lives and
depreciation rates.  We would expect asset lives to decrease during recessions but we
have not spelled out exactly how to adjust for this factor.

                                                  
78 See Diewert (2004).
79 See Hulten and Wykoff (1981a) (1981b) and Jorgenson (1996a).
80 Some statistical agencies solve this problem by “scrapping” the depreciated value of the asset when it
reaches a certain age.  This solves one problem but it introduces two additional problems: (i) the truncation
age has to be decided upon and (ii) the theoretical simplicity of the model is lost.
81 The survey should also ask for information on what the age and initial purchase prices of the sold or
scrapped assets was.
82 Our reason for neglecting use is simple: usually, the national statistician will not have data on the use of
machines available.
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However, we have provided a fairly comprehensive review of most of the issues
surrounding the measurement of capital, including a method for forming intangible
capital stocks.
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Figure 3: Alternative Stock Prices
Using Smoothed Asset Price
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Figure 2: Alternative Stock Prices
with Constant Real Interest Rates
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Figure 1: Capital Stock Prices
using Ex Post Price Changes
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Figure 4: Alternative Capital
Stocks Using Ex Post Price
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Figure 5: Alternative Capital
Stocks Using Constant Real Rates
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Figure 7: Alternative User Costs
Using Ex Post Asset Price Changes
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Figure 8:Alternative User Costs
Using Constant Real Interest Rates
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Figure 9: Alternative User Costs
Using Smoothed Asset Price
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Figure 10: Alternative Capital
Services Using Ex Post Price
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Figure 11: Alternative Capital 
Services Using Constant Real 

Rates
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Figure 12: Alternative Capital
Services Using Smoothed Asset

Price Changes
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