
Evolution of Preferences

by

Eddie Dekel, Jeffrey C. Ely and Okan Yilankaya

JUNE 2004

Discussion Paper No.: 04-12

DEPARTMENT OF ECONOMICS
THE UNIVERSITY OF BRITISH COLUMBIA

VANCOUVER, CANADA  V6T 1Z1

http://www.econ.ubc.ca



Evolution of Preferences

Eddie Dekel, Je¤rey C. Ely and Okan Yilankaya1

June 2004
(First Version: July 1998)

1Dekel: Department of Economics, Northwestern University and Eitan Berglas
School of Economics, Tel Aviv University, dekel@northwestern.edu; Ely: Depart-
ment of Economics, Northwestern University, ely@bu.edu; Yilankaya: Department
of Economics, University of British Columbia, okan@interchange.ubc.ca. We thank
seminar participants at the Econometric Society World Congress (Seattle, 2000),
Conference on Economic Design (Istanbul, 2000), Koc, Michigan, Northwestern,
Quenn�s, Rochester, Simon Fraser, Southampton, and UBC. Dekel and Yilankaya
thank NSF and SSHRC, respectively, for research support. An earlier version of
this paper appeared in Yilankaya (1999).



Abstract

We model, using evolutionary game theory, the implications of endogenous
determination of preferences over the outcomes of any given two-player nor-
mal form game, G. We consider a large population randomly and repeatedly
matched to play G. Each individual has a preference relation over the out-
comes of G which may be di¤erent than the �true�payo¤ function in G, and
makes optimal choices given her preferences. The evolution of preferences is
driven by the payo¤s in G that each player obtains. We de�ne stable out-
comes (of G) as arising from the stable points of the evolutionary process
described above. In our most general model players know the distribution of
preferences in the population and observe their opponents�preferences with
a probability p 2 [0; 1]. They then play a (Bayesian) Nash equilibrium of the
resulting game of incomplete information. In the case in which players can
perfectly observe their opponents�preferences, i.e., p = 1, (where the game
is actually one of complete information) an outcome is stable only if it is e¢ -
cient. Also, an e¢ cient outcome which arises from a strict Nash equilibrium
is stable. We also characterize, for 2 � 2 games, both the stable outcomes
and the stable distributions of preferences in the population. When prefer-
ences are unobservable, i.e., p = 0, we show that stability in our model of
evolution of preferences coincides with the notion of neutrally stable strategy
(NSS). Finally, we consider robustness of these results. The necessity and
su¢ ciency results are robust to slight changes in p, except for the su¢ ciency
of NSS when p = 0: There are in fact (Pareto-inferior) risk-dominant strict
equilibria that are not stable for any p > 0:



1 Introduction

Economists, traditionally, have taken preferences of individuals as given and
have refrained from trying to explain them. In recent years interest has arisen
in trying to understand how preferences are formed, how they change through
time, and how all of these processes in�uence economic activity. Evolutionary
analysis seems to be particularly useful in tackling these questions. The main
idea, borrowed from evolutionary biology, is that �successful rules�are going
to proliferate, replacing unsuccessful ones.1

In this paper, we analyze, using evolutionary game theory, the behavioral
implications of endogenous determination of preferences over the outcomes
of any given two-player normal form game. The basic line of reasoning is
as follows: Preferences lead to behavior, behavior determines �success�, and
success regulates the evolution of preferences.2 We start with a symmetric
two-player normal form game G. We imagine a large population randomly
and repeatedly matched to play G:We interpret, as is standard in evolution-
ary game theory, the payo¤s as representing ��tness�, implying that evolu-
tion is driven by these payo¤s. We allow each individual to have a preference
relation on outcomes of G which may be di¤erent than the payo¤ functions.
In other words, we allow �subjective�preferences to diverge from �objective�
payo¤s.3 We do not, a priori, restrict the preferences that people may have;
any preference relation may be represented in the population. Therefore it
is possible to endogenize preferences and study their evolution. We assume
that each individual makes optimal choices given her preferences, so that
when two people are matched they play an equilibrium of the �game�given
their preferences and the action set of G.4 This is what we mean when we

1Some of the early proponents of this idea are Becker (1976), Frank (1987), Hirshleifer
(1977), and Rubin and Paul (1979). More recent works include Guth (1995), Guth and
Yaari (1992), Hansson and Stuart (1990), Robson (1996), Rogers (1994), and Waldman
(1994). Also see Dekel and Scotchmer (1999), Ely and Yilankaya (2001), Fershtman and
Weiss (1996), Guth and Bester (1998), Ok and Vega-Redondo (2001), Robson (2001),
Sethi and Somanathan (2001), and Samuelson (2001) for a brief introduction on evolution
of preferences.

2The �indirect evolutionary approach�was pioneered by Guth and Yaari (1992) and
Guth (1995).

3People do not always act according to their pure self-interest (as narrowly de�ned),
altruism, fairness, envy, etc. may e¤ect their behavior. See, for example, the survey of
Rabin (1998).

4To de�ne a game one also needs to specify what each person knows about her oppo-
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say preferences lead to behavior.
�Success�is measured by �tness, i.e., the payo¤s of the game G. There-

fore, the behavior of an individual, i.e., her part of the equilibrium play, will
determine her success. Finally, the evolution of preferences will be driven by
their success: The proportion of people with preferences that have yielded
higher �tness will increase at the expense of those who have preferences that
have yielded lower �tness. This can be the result of inheritance of prefer-
ences by children from their parents. The inheritance need not be genetic;
it can be by children�s emulation of their parents. Also, children can inherit
preferences from their �cultural parents�. (See Cavalli-Sforza and Feldman
(1981) and Boyd and Richerson (1985) for the theory of cultural evolution.)
We look at the stable points of the evolutionary process described above

to analyze the preferences (on outcomes of G) that we expect to see in the
long run.5 However, our main emphasis is not on the evolution of preferences
per se, but on the implications of it for the outcome of the game we want to
analyze.
In this paper we analyze the implications of evolution of preferences. The

evolutionary game theory literature began by studying the evolution of be-
havior : behavior determines success which in turn regulates the evolution of
behavior. These models of strategic interaction, where each player is com-
mitted to a particular strategy (at least for a signi�cant amount of time), are
heavily in�uenced from biological models of genetically determined behavior.
As such, we believe, they underestimate the cognitive abilities of human be-
ings.6 In our model people behave rationally given their preferences. Hence,
our approach can be thought as a way to embed a more sophisticated model
of behavior within the natural selection paradigm. This approach of study-
ing the evolution of preferences has been used to study evolution of various
particular forms of preferences, and more recently also general preferences as
we do here.7

For the evolutionary dynamics (or static stability concepts, like �evolu-
tionary stable strategy�, that are inspired by them) to be plausible, it is
necessary that there is some inertia, i.e., people�s choices are �locked-in�,

nent�s preferences. We elaborate on this issue below.
5In this paper, like in many models in the literature, we use a static stability concept

that is inspired by evolutionary dynamics and supposed to capture its essential implica-
tions.

6See, for example, Fudenberg and Levine (1998) for a similar criticism.
7See Footnote 1.
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at least for a signi�cant amount of time. Evolution of preferences has an
advantage in this respect too. As opposed to strategies in a game, one can-
not change her preferences over that game easily, if at all. �Preference� is
arguably a more primitive concept than �behavior�.
We assume that when two players are matched they play an �equilib-

rium�. What the �game� is, and hence which equilibrium concept is ap-
propriate to use, depends on what players observe about their opponents�
preferences. In addition to the cases where each player fully observes her op-
ponent�s preferences and does not observe anything at all, we also consider
an intermediate case in which a player observes her opponent�s preference
with probability p 2 (0; 1).
In the perfectly observable preferences case, we assume that when two

players are matched a Nash equilibrium of the game (given by the action set
of G and their preferences) is played. After de�ning stability (of outcomes of
G), which is very much in the spirit of the concept of neutrally stable strategy,
we investigate the properties of stable outcomes. First, all the incumbents
receive the same �tness in each of their matches with other incumbents,
and, second, the average �tness they obtain must equal to the �tness of a
symmetric strategy pro�le inG. We call a strategy e¢ cient if its �tness when
played against itself is at least as large as the �tness of any other symmetric
strategy pro�le. Our �rst result implies that the e¢ cient strategy gives the
highest feasible �tness that any stable outcome can generate. We show that
it also gives the lowest feasible �tness of any stable outcome. Thus, e¢ ciency
is a necessary condition for stability: An outcome is stable only if the average
�tness of each type in the population is equal to that of the e¢ cient strategy.
This result is in contrast to the �stable only if Nash� folk theorem of the
evolution of behavior paradigm.8 We then show that if a strategy is e¢ cient
and constitutes a strict Nash equilibrium when it is played against itself, then
the outcome of that equilibrium is stable. By combining the last two results,
we can see that the unique stable outcome in much studied coordination
games will be that of the �good equilibrium�.
We next restrict our attention to 2� 2 games. In this case we are able to

characterize the stable outcomes. E¢ ciency of a pure strategy is su¢ cient, as
well as necessary, for the corresponding outcome to be stable. In particular,
in the Prisoners�Dilemma game, �cooperation�is the unique stable outcome

8This folk theorem about only Nash equilibrium outcomes being stable is a constant
theme, for example, in Mailath (1998), Samuelson (1997), and Weibull (1995).
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(as long as the strategy �cooperate� is e¢ cient, of course). Games with a
mixed e¢ cient strategy, on the other hand, do not have stable outcomes with
the exception of a nongeneric class of Hawk-Dove games. We also characterize
the set of stable distributions of preferences for 2� 2 games.
We then study the case in which players do not observe their opponents�

preferences, but know the distribution of preferences in the population. We
assume that, given any distribution of preferences, the aggregate play in the
population corresponds to a Bayesian-Nash equilibrium of the game where a
player�s type is her preference. That is, we will assume that each individual,
upon being selected to play, will have correct beliefs about the distribution
over her opponents�play and will choose a (possibly mixed) action that is a
best-reply, according to her own preferences, to this belief. We show that an
outcome induced by a symmetric strategy pro�le (which are the only possible
ones that can result from the symmetric interaction we analyze) is stable i¤
that strategy is neutrally stable. Thus, the tendency for e¢ ciency in the
observable preferences case disappears if preferences are unobservable, and
the �stable only if Nash�folk theorem of evolutionary game theory is revived.
The intuition is simple: If nobody can observe your preferences, and hence
condition their behavior on that, there is no advantage in having preferences
that are di¤erent from the one given by the �tness function.
Finally, we consider the case in which each player observes her opponent�s

type with probability p 2 (0; 1). We are particularly interested whether the
stability results are �continuous�in p, so that the results for the observable
(respectively, unobservable) preferences case hold for high (respectively, low)
enough p: First, we show that if a strategy is e¢ cient and constitutes a
strict Nash equilibrium when it is played against itself, then the outcome
of that equilibrium is stable for any p: We then show that �stable only if
Nash� result of the unobservable preferences and �stable only if e¢ cient�
result of the observable preferences are robust to slight changes in p: If a
symmetric pure-strategy pro�le is not a Nash equilibrium, then its outcome
is not stable for p low enough. Likewise, the outcome of a symmetric pure-
strategy pro�le is not stable for high enough p, if that strategy is not e¢ cient.
The su¢ ciency result of the unobservable preferences case, however, breaks
down. We provide a coordination game example, where the outcome of a
risk-dominant (but payo¤-dominated) strict Nash equilibrium is not stable
for any p > 0:
The rest of the paper is organized as follows: We introduce the model in

Section 2. We analyze the cases of observable, unobservable and imperfectly

4



observable preferences in Sections 3, 4 and 5, respectively. All the proofs are
in the Appendix.

2 The Model

We start with a symmetric two-player normal form game G with a �nite
action set A = fa1; a2; :::; ang; and a payo¤ function � : A� A! R: We in-
terpret, as is standard in the evolutionary game theory literature, the payo¤s
as having an objective meaning, e.g., as representing ��tness�. The survival
of a player depends on her success in the game, which is evaluated according
to the �tness function �. Let � represent the set of mixed strategies in G;
the payo¤ function � extends naturally to ���: If ai 2 A; then we identify
ai with the element of � which assigns probability one to ai; and we adopt
this convention for all probability distributions throughout the paper. Let O
represent the set of outcomes in G, i.e., the set of probability distributions
on A� A:
We imagine a large population randomly and repeatedly matched to play

the game G. In standard evolutionary models each player is assumed to
play a particular strategy in G. We, instead, allow each player to have (von
Neumann-Morgenstern) preferences over outcomes in G which may be dif-
ferent than �: In other words, we allow �subjective�preferences to diverge
from �objective��tness. Let � � [0; 1]n2 be the set of all possible (modulus
a¢ ne transformations) preference relations on A � A: We will often refer
to the elements of � as �type�s. The environment will be characterized by
a probability distribution on �; representing the distribution of preferences
in the population. We will restrict attention to distributions that have �-
nite supports. Let P(�) be the set of all possible �nite support probability
distributions on �: Finally, let C(�) denote the support of � 2 P(�):
We assume that each player is behaving �rationally�given her preferences

and the �information structure�, i.e., what the players observe about their
opponents� types. In particular, we assume that an equilibrium (Nash or
Bayesian-Nash) of the �game�, which is readily de�ned given the informa-
tion structure, is played when two players are matched. Given a particular
equilibrium, we can determine the expected �tness to each type � in the
population, on which the evolution of the type distribution depends. While
it is not a part of our formal model, we view the equilibrium play as arising
from a process of learning which operates much faster than the evolutionary
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process we model. Our model focuses on evolution of the type distribution
�: We suppose that whenever a new distribution � arises as a consequence
of evolutionary forces, the learning process always reaches equilibrium play
(given �) before subsequent evolution of types proceeds.
We consider three possible information structures, which we study in turn

in the next three sections. In the �rst, when two players are matched they
observe each other�s preferences. In the second, we consider the case where
they do not observe anything. Finally, in the third, we assume that when
two players are matched, each player independently observes her opponent�s
preferences with probability p 2 (0; 1).
The stability criterion we use is static, and like its counterparts in the

literature, is intended to capture the e¤ects of the evolutionary dynamics
discussed above. We will supply a di¤erent de�nition of stability for each of
the three cases we consider. It should be clear from the discussions of these
de�nitions that they follow from the same considerations, and can easily be
combined in a single de�nition, but only by introducing even heavier notation
throughout.

3 Observable Preferences

We assume that when � and �
0
are matched a Nash equilibrium of the game

(given by the action set A for both players and payo¤ functions � and �
0
) is

played. Let B(�) denote the set of all equilibrium con�gurations when the
distribution of preferences in the population is given by �; i.e., each b 2 B(�)
speci�es a Nash Equilibrium for all possible matches between all the types
represented in the population. Formally, B(�) is the set of all functions
b : C(�)� C(�) ! � ��; such that b(�; �0) = (b1(�; �

0
); b2(�; �

0
)) is a Nash

equilibrium of the game given by � and �
0
; where b1(�; �

0
) and b2(�; �

0
) are

(possibly mixed) actions taken by, respectively, � and �
0
: Since we do not

allow players to condition their actions on their positions in the game, we
have b1(�; �

0
) = b2(�

0
; �); so that, in the particular equilibrium con�guration

chosen, the action that � takes when matched against �
0
is the same regardless

of her being a row or a column player. Notice that each b induces an outcome
in G, which we denote by o(b).9

Given a preference distribution in the population � and an equilibrium

9We drop the arguments in b(:) to simplify the exposition.
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con�guration b, we can calculate the expected �tness that � 2 � gets:

��(� j b) =
X

�
02C(�)

�(b1(�; �
0
); b2(�; �

0
))�(�

0
);

where �(�
0
) is the population share of �

0
:

A preference distribution is stable with respect to outcome x via b if x
is the outcome induced by the equilibrium con�guration b and every type in
the population obtains the same expected �tness.

De�nition 1 A distribution � is stable with respect to outcome x via b
if x = o(b) for some b 2 B(�) and ��(� j b) = ��0 (� j b) for all �; �

0 2 C(�):

We are interested in what the evolution of preferences implies about the
play in the game the population is playing, G. The stability de�nition we use
is very much in the spirit of the concept of neutrally stable strategy (NSS).10

It is static and intends to capture the implications of evolutionary selection.
When a mutant enters in small proportion, the incumbents should not have
lower average �tness than the mutant, in other words the population should
be immune to invasions by mutants.11 Of course, this idea cannot, readily and
easily, be translated into a simple de�nition in our setting. In the standard
evolutionary game theory literature, each type (and hence the mutant) is
committed to play a particular strategy. However, here each type is a prefer-
ence relation; so, a mutant may take a di¤erent action when matched against
di¤erent incumbents. Moreover, the mutant�s action against any given in-
cumbent may be indeterminate as well. The only restriction on the action of
a mutant � when matched against an incumbent �

0
, is that it has to be ��s

strategy in some equilibrium of the game given by � and �
0
: Our stability de-

�nition is a rather strong one: we require immunity of the population against
the invasion of any mutant and we consider all of the equilibria between the
mutant and any incumbent. The idea is that when � and �

0
are matched

there may be multiple equilibria and we do not know which of these will be
played, so we check the stability against each of them. One can think of a

10A strategy � is an NSS if for every strategy �
0
there exists "

0 2 (0; 1) such that,
�(�; "�

0
+ (1� ")�) � �(�0 ; "�0 + (1� ")�) for all " 2 (0; "0):

11However, this requirement does not imply that mutants will be driven out. We,
nevertheless, use an NSS-type de�nition (instead of, say, ESS-type), since many preference
relations are behaviorally equivalent. Moreover, we conjecture that qualitatively similar
results will hold with a set-valued stability concept.
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random process (maybe random only to an outside observer) that determines
which equilibrium will be played. As long as each of those equilibria has a
positive probability of being played, we have to check against all of them.12

However, we have one restriction on the equilibria played in the post-entry
population. We require that when two incumbents are matched against each
other, they continue to play the same equilibrium after the mutant enters.
The entry of a mutant should not have any e¤ect on the play within the
incumbent population, especially when the very question is the stability of
that play. This is de�nitely the case when the equilibrium play is the result
of a learning process: If this process settled on a particular equilibrium in the
match between two incumbents, then why would the entrance of a mutant
cause a shift to another equilibrium?

De�nition 2 An outcome x is stable (with � and b) if there exists a dis-
tribution � and an equilibrium con�guration b 2 B(�) such that � is stable
with respect to x via b and the following condition holds:
8� 9"0 > 0 such that 8" 2 (0; "0); 8�0 2 C(�); and 8b 2 B((1�")�+"� j b);

we have:

�
�
0 ((1� ")�+ "� j b) � ��((1� ")�+ "� j b);

where B((1� ")�+ "� j b) = f~b 2 B((1� ")�+ "�) : ~b(�1; �2) = b(�1; �2) for
all �1; �2 2 C(�)g:

We will refer to the distribution � in the de�nition as the stable distrib-
ution.
We �rst show that if an outcome x is stable (with distribution �), then

all the incumbents receive the same �tness in each of their matches with
other incumbents. Moreover, the average �tness that they obtain (which, of
course, is equal to the �tness they obtain from each match), can be generated
by a symmetric strategy pro�le in G. So, if an outcome is stable, then the
average �tness that each type in the population gets must be equal to the
payo¤ of a symmetric strategy pro�le in G.13

12Notice that one of the types in consideration (entrant) is new to the population, so
we cannot claim that there is a �perceived way�of playing the game. This �convention�
argument supports our assumption below that incumbents will continue to play the same
equilibrium when they are matched against other incumbents.
13Note that this is vacuously true if we restrict our attention to monomorphic popula-

tions, i.e., those in which only one preference type is represented.
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Proposition 1 If an outcome x is stable (with � and b), then there exists
� 2 � such that for all �; �

0 2 C(�);

��(� j b) = �(b1(�; �
0
); b2(�; �

0
)) = �(�; �):

We call a strategy �� e¢ cient if the payo¤ of the strategy pro�le (��; ��)
is at least as large as the payo¤ of any other symmetric strategy pro�le. This
e¢ ciency concept is meaningful in light of Proposition 1. All stable outcomes
must give every type in the population the same payo¤ as some symmetric
strategy pro�le. So, the stable outcomes are naturally ranked in terms of the
payo¤s that they generate, and �(��; ��) is the highest feasible payo¤ that
any stable outcome can generate.

De�nition 3 �� 2 � is e¢ cient if �(��; ��) � �(�; �) for all � 2 �:

When �� is e¢ cient, we will refer �(��; ��) as the e¢ cient payo¤. We
now show that if (a�; a�) is a strict Nash equilibrium of G, where a� 2 A is
e¢ cient, then it is stable as well. Consider a population consisting of types
for which a� is a strictly dominant strategy and any entrant type. If the
entrants play anything but a� against the incumbents, they will be driven
out, since (a�; a�) is a strict Nash equilibrium. If they play a� on the other
hand, their expected �tness can never exceed that of the incumbents, since
a� is e¢ cient.

Proposition 2 If a� 2 A is e¢ cient and (a�; a�) is a strict Nash equilibrium
of G, then (a�; a�) is stable.

In Proposition 1 we showed that, for an outcome to be stable, each type
in the population must receive the same �tness in each of its encounters
with other types in the stable distribution, which implies that the average
�tness that each type in the population gets must be equal to the payo¤
of a symmetric strategy pro�le in G. It follows from the de�nition of e¢ -
ciency that if an outcome is stable, then the average �tness of the population
cannot be larger than the e¢ cient payo¤. Our next result proves that it
cannot be smaller either: An outcome is stable only if the average �tness
of each type in the population is equal to the e¢ cient payo¤. The idea is
simple, and best demonstrated for monomorphic populations, where its �se-
cret handshake��avor is clear.14 Suppose the incumbents��tness is less than

14See Robson (1990).
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the e¢ cient payo¤. We can always �nd an entrant which would do better
than the incumbents in the post-entry population. Consider, for example,
a coordination game. The outcomes of the �bad equilibria�are not stable,
because an entrant whose preferences coincide with the �tness function can
invade by playing, as part of the post-entry equilibrium con�guration, the
bad action against the incumbents and the good one against itself. Now,
consider a Prisoners�Dilemma game. The defection outcome is not stable.
Any population where defection is played can be invaded by an entrant who
has �coordination�type preferences, i.e., types for which defection (respec-
tively, cooperation) is the unique best response to defection (respectively,
cooperation). There is a post-entry equilibrium con�guration in which the
entrant and the incumbents both defect when they face each other, and the
entrant cooperates when matched with itself. Our next result shows that
these arguments can be generalized: E¢ ciency is a necessary condition for
stability.

Proposition 3 If an outcome x is stable (with � and b), then for all � 2
C(�); ��(� j b) = �(��; ��), where �� is e¢ cient.

Combining Propositions 2 and 3 yields a unique prediction for a class of
games which include the much studied coordination games:

Corollary 1 Let G be such that �(a1; a1) � �(�; �) for all � 2 � and
�(a1; a1) > �(ai; a1) for i 6= 1: The (unique) stable outcome is (a1; a1):

We now restrict our attention to 2� 2 games.

3.1 2� 2 Games
In this subsection we exclusively study a class of games that attracted con-
siderable attention in the literature: 2� 2 games. First, we characterize the
stable outcomes. In Proposition 3 we showed that e¢ ciency was necessary
for stability. It turns out that, in 2� 2 games, e¢ ciency of a pure strategy is
su¢ cient for the corresponding outcome to be stable. Moreover, games with
a mixed e¢ cient strategy do not have stable outcomes with the exception
of a nongeneric class of Hawk-Dove games. Hence, for generic games, the
existence of a pure e¢ cient strategy is both necessary and su¢ cient for the
existence of a stable outcome. Finally, we characterize the stable distribu-
tions of preferences. The Prisoners�Dilemma case is particularly interesting.
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All of the types that can be in any stable distribution belong to a certain
equivalence class which has a �secret handshake��avor: Against any oppo-
nent, they cooperate with positive probability in equilibrium only if their
opponent is cooperating with probability one.
In order to simplify the exposition in establishing these results, we now

introduce more notation and review a basic fact about 2� 2 games.

FACT Consider any 2�2 (normal) game form with the strategy set fA;Bg.
In terms of equilibrium behavior, all possible payo¤ functions that a
player may have, belong to one and only one of the following equivalence
classes: AA, AB�, BA�, BB, and �o, where � 2 [0; 1]; and

AA =
A B

A 1 1
B 0 0

; AB� =
A B

A 1� � 0
B 0 �

; BA� =
A B

A �1 + � 0
B 0 ��

;

BB =
A B

A 0 0
B 1 1

; �o =
A B

A 0 0
B 0 0

:

Notice that X is a best-response to A and Y is a best-response to B for
the payo¤ functions in XY 2 fAA, AB�, BA�, BBg. All players with payo¤
functions within a given class will have the same set of equilibria in any
game (game is de�ned by players and their payo¤ functions, in addition to
the game form). A payo¤ function for which A strictly dominates B belongs
toAA, and any player with this kind of payo¤s will play A in any equilibrium
of any game. A player with a payo¤ function that belongs to AB�, in any
equilibrium of any game, will play A (respectively, B) if her opponent is
playing A (respectively, B) and mix between A and B if her opponent plays
A with probability �: For example, in the game that an AB� is matched
with an AA, the unique equilibrium is (A;A); when an AB� is matched with
an AB�; where �,� 2 (0; 1); there are three equilibria: (A;A), (B;B) and a
mixed strategy equilibrium in which AB� (respectively, AB�) plays A with
probability � (respectively, �).
We next present a result which, when combined with Proposition 3, char-

acterizes stable outcomes in 2� 2 games. Let G be

A B
A a; a b; c
B c; b d; d
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where a � d, without loss of generality. Suppose that A is e¢ cient. We
show that (A;A) is stable, and hence all the types in any stable distribution
obtain a as �tness. If A is not e¢ cient, i.e., if the e¢ cient strategy is mixed,
then there is no stable outcome unless G is a Hawk-Dove game (c � a; b � d)
with b = c.

Proposition 4 a) If A is e¢ cient, then (A;A) is stable.
b) If A is not e¢ cient, then the outcome induced by (��; ��) is stable i¤

b = c � a; where �� is e¢ cient.

We now consider stable distributions, i.e., the preferences that are se-
lected. We showed that in Prisoners�Dilemma and Hawk-Dove games, in
which A is e¢ cient, a monomorphic population consisting of AB1�s is a sta-
ble distribution. It turns out that it is the only one.15 To illustrate this,
consider a Prisoners�Dilemma game and restrict attention to monomorphic
populations. It is clear why AA (cooperate (A) dominates defect (B)) can-
not be stable. BB enters and in the unique equilibrium it defects while the
incumbent is cooperating. But, why cannot the type with coordination game
payo¤s (AB�) that cooperates be stable, since it defects when the opponent is
defecting and cooperates when the opponent is cooperating? The only prob-
lem arises from the mixed strategy equilibrium against the entrant AB�,
where � > �: In that equilibrium AB� plays cooperation with probability �
and AB� plays cooperation with probability �; i.e., AB� is cooperating too
much relative to AB�: The only type that is immune to this problem is AB1
(the limit in this heuristic selection process): in any equilibrium against any
type, it cooperates with positive probability only if its opponent is coop-
erating with probability one. Hence, a monomorphic population consisting
of AB1�s is the unique stable distribution. Notice that AB1 is not generic
in the set of payo¤ functions. Moreover, the equilibrium chosen when it is
matched against itself ((A;A)) is not perfect, since A is weakly dominated.
However, notice that, as the discussion above illustrates, both the types and
the equilibrium con�gurations chosen are endogenous to the model, they are
the outcomes of the �selection process.�
We also show below that in coordination games any type for which (A;A)

is an equilibrium when matched against itself can be in a stable distribution.

15Note that AB1 is an equivalance class. All types who are indi¤erent between A and
B (respectively, strictly prefer B) when the opponent plays A (respectively, B) belong to
this class.
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Also, in Hawk-Dove games where the e¢ cient strategy is mixed, a monomor-
phic population consisting of AB� is the unique stable distribution, where
� is the weight that the e¢ cient strategy puts on A. This is interesting,
since the �tness function of these games is given by BA�:Why, then, cannot
BA� be in any stable distribution? Because, a type for which �Hawk�is a
dominant strategy (AA) enters, and since BA� plays �Dove�in the unique
equilibrium when BA� and AA are matched, AA obtains a higher average
�tness than the incumbents.

Proposition 5 For any generic 2� 2 game G, � is a stable distribution i¤
its support is a subset of M(G), where M(G) is de�ned below.
a) For games in which A is e¢ cient, i.e., a > �(�; �) 8� 6= a :
i) If a > c and a > b, then M(G) = fAA, AB�, BA1, �og; � 2 [0; 1]:
ii) If a > c and b > a, then M(G) = fAA, AB�g; where � � a�d

b�d :
iii) If c > a, then M(G) = fAB1g:
b) If �� 6= A is e¢ cient and A is not and b = c > a, then M(G) =

fAB��g; where �� = ��(A):

4 Unobservable Preferences

In this section we consider the case in which players do not observe their
opponents�types. Suppose that the distribution of preferences is given by �:
The situation can be analyzed as a two-player Bayesian game, �(�); where,
for both players, the set of possible actions is A, the set of possible types is
C(�), the payo¤ function of type � is given by �; and for each type the proba-
bility distribution over the other player�s types is given by the common prior
distribution �: Notice that we have symmetry, since the players cannot con-
dition their behavior on their position in G. We will assume that, given the
population distribution �; the aggregate play in the population corresponds
to a Bayesian-Nash Equilibrium of this game. That is, we will assume that
each individual, upon being selected to play, will have correct beliefs about
the distribution over her opponents�play and will choose a (possibly mixed)
action that is a best-reply, according to her own preferences, to this belief.
Let B(�) denote the set of all Bayesian-Nash Equilibria when the distribu-
tion of preferences in the population is given by �: Each b 2 B(�) determines

13



an action for each type � in C(�); b� 2 �, such that

b� 2 argmax
�2�

X
�
0

�(�; b
�
0 )�(�

0
):

The average �tness of type �, given the population distribution � and the
equilibrium b 2 B(�), is, then

��(b j �) =
X
�
0

�(b�; b�0 )�(�
0
):

Like in the previous section, a preference distribution � is stable with respect
to outcome x via b if x is the outcome induced by the equilibrium b of �(�)
and every type in the population obtains the same expected �tness. The
stability de�nition is in the same spirit as well:

De�nition 4 An outcome x is stable (with � and b) if there exists a distri-
bution � and an equilibrium b 2 B(�) such that � is stable with respect to x
via b and 8� 9"0 > 0 such that 8" 2 (0; "0); 8�0 2 C(�); we have:
i) B((1� ")�+ "� j b) 6= ;, and
ii) �

�
0 ((1�")�+"� j b) � ��((1�")�+"� j b); for all b 2 B((1�")�+"� j

b); where
B((1� ")�+ "� j b) = f~b 2 B((1� ")�+ "�) : ~b

�
0 = b

�
0 for all �

0 2 C(�)g:

When a mutant enters, we require each incumbent to do at least as well
as the mutant in any equilibrium in the post-entry population in which the
incumbents�actions are left unchanged, which we call focal equilibria. The
arguments for restricting the set of equilibria this way and checking for all
equilibria in this restricted set are the same as the ones made in the observable
types case.16 The only di¤erence between the two de�nitions in the observ-
able and unobservable types cases, then, is the requirement, in the latter
case, of non-emptiness of the set of focal equilibria in the post-entry popu-
lation. This is not a real di¤erence, since non-emptiness is trivially satis�ed
in the observable-types case. We require the existence of a focal equilibrium

16One may argue that the arguments presented can only justify restricting the post-
entry equilibrium to those where incumbents�actions are �close enough�to their actions
in the before-entry equilibrium instead of being exactly equal. Our stability de�nition
can easily be changed to deal with this concern without qualitatively a¤ecting the result
below.
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in the post-entry population, because we want the resulting outcome to be
�close� to the outcome that we are claiming to be stable. If an entrant
causes the outcome induced by the equilibrium play of the agents to move
signi�cantly, even for arbitrary small population share of the entrant, then
that outcome cannot be considered stable. Consider the following Prisoner�s
Dilemma game:

A B
A 2 0
B 3 1

Now, consider a monomorphic population consisting of AB1�s (indi¤erent
between A and B if the opponent plays A, strictly prefers B if the opponent
plays B) playing A in the chosen equilibrium. No entrant can invade, since
in any equilibrium in any post-entry population (not only within the set of
focal equilibria), the incumbents play A with positive probability only if the
entrant plays A with probability one. In a sense, the incumbents are stable.
However, (A;A), the cooperation outcome is not stable. Consider the entrant
for which B strictly dominates A; in the unique equilibrium in the post-entry
population, even for arbitrarily small shares for the entrant, everyone plays
B. So, the introduction of even a very small share of the entrant causes a
large shift in the outcome, from �all cooperate�to �all defect�. Hence, even
though no entrant can earn a strictly higher �tness than the incumbents in
any equilibrium, we cannot claim that (A;A) is stable.
Given the symmetric nature of the interaction in the population, any

strategy pro�le in the Bayesian Game, �(�); as well as any equilibrium b 2
B(�), induces a symmetric outcome in G:

FACT Any outcome induced by any strategy pro�le in �(�) is identical to
the outcome induced by (�; �), for some � 2 �:

We now show that, when preferences are unobservable, stability in our
model of evolution of preferences has the same implications with the concept
of neutrally stable strategy (NSS) in the game G.17 An outcome induced
by a symmetric strategy pro�le, which are the only possible ones that can
result from the interaction we analyze, is stable i¤ that strategy is an NSS.
Instead of emphasizing the equivalence with NSS, it may be more informa-
tive to look at slightly di¤erent necessary and su¢ cient conditions separately.

17Note that if � is an NSS, then (�; �) is a Nash equilibrium, and conversely, if (�; �) is
a strict Nash equilibrium, then � is an NSS.
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Firstly, �stable only if Nash�folk theorem is revived: Nash behavior is a nec-
essary condition for stability. Consider a monomorphic population that is not
playing a Nash equilibrium of the game G. This implies that an entrant who
plays a (pure) action that is a strictly better response (in terms of �tness) to
incumbents�play would be more successful than the incumbents. Conversely,
a strict Nash equilibrium outcome will be stable, say, with incumbents who
have preferences for which the Nash action is strictly dominant. In this case
any entrant who does not play the Nash action will be driven out.
The result and the related discussion illustrate how close the relation be-

tween models of evolution of preferences and the standard evolutionary game
theory are when preferences are completely unobservable. The basic intuition
is straightforward: If nobody can observe your preferences, and hence condi-
tion their behavior on that, there is no advantage in having preferences that
are di¤erent from the one given by the �tness function.

Proposition 6 The outcome induced by (�; �) is stable i¤ � is an NSS.

5 Imperfectly Observable Preferences

In this section we consider an intermediate case where preferences are im-
perfectly observable. In particular, we assume that each player observes the
preferences of the opponent she is matched against with probability p 2 (0; 1)
(with the complementary probability, 1� p, she does not observe anything)
independent of what her opponent observes. Suppose that the distribution
of preferences is given by �: The situation can be analyzed as a two-player
Bayesian game, �p(�). Again we have symmetry, since the players can-
not condition their behavior on their position in G. We will assume that,
given the population distribution �; the aggregate play in the population
corresponds to a Bayesian-Nash Equilibrium of this game. That is, we will
assume that each individual, upon being selected to play, will have correct
beliefs about the distribution over her opponents�play and will choose an
(possibly mixed) action that is a best-reply, according to her own prefer-
ences, to this belief. Let Bp(�) denote the set of all Bayesian-Nash Equilibria
when the distribution of preferences in the population is given by �: Each
equilibrium determines, for each type in the population, a set of actions that
she would take when she observes any other type in the population, and an
action that she would take when she does not observe anything. Formally,
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each b 2 Bp(�) determines an action for each type � in C(�) in the case
she observes �

0 2 C(�); b�(�
0
) 2 �, and an action in the case she does not

observe anything, b�, such that

b�(�
0
) 2 argmax

�2�
p�(�; b

�
0 (�)) + (1� p)�(�; b

�
0 );

and
b� 2 argmax

�2�

X
�
0

[p�(�; b
�
0 (�)) + (1� p)�(�; b

�
0 )]�(�

0
):

The average �tness of type �, given the population distribution � and the
equilibrium b 2 Bp(�), is, then

��(� j b) =
X
�
0

fp[p�(b�(�
0
); b

�
0 (�)) + (1� p)�(b�(�

0
); b

�
0 )] +

(1� p)[p�(b�; b�0 (�)) + (1� p)�(b�; b�0 )]g�(�
0
):

As in the previous sections, a preference distribution � is stable with respect
to outcome x via b if x is the outcome induced by the equilibrium b of �p(�)
and every type in the population obtains the same expected �tness. The
stability de�nition is in the same spirit as well:

De�nition 5 An outcome x is stable (with � and b) for p 2 (0; 1), if there
exists a distribution � and an equilibrium b 2 Bp(�) such that � is stable with
respect to x via b and 8� 9"0 > 0 such that 8" 2 (0; "0); 8�0 2 C(�); we have:
i) Bp((1� ")�+ "� j b) 6= ;, and
ii) �

�
0 ((1�")�+"� j b) � ��((1�")�+"� j b); for all b 2 Bp((1�")�+"� j

b); where
Bp((1 � ")� + "� j b) = f~b 2 Bp((1 � ")� + "�) : ~b�0 = b�0 and ~b�0 (�

00
) =

b
�
0 (�

00
) for all �

0
; �

00 2 C(�)g:
The set of focal equilibria considered is a natural extension of the ones

considered in previous sections. Each incumbent is taking the same action
when she observes any other incumbent and when she does not observe any-
thing in all focal equilibria. There is no restriction on the entrant�s actions
or on the action taken by incumbents when they observe the entrant�s pref-
erences. It is easy to see that when p = 1 and p = 0 the de�nition of stability
reduces to the corresponding de�nitions in the observable and unobservable
preferences cases, respectively.
We �rst show that (strict) equilibrium combined with e¢ ciency implies

stability for any probability of observability.
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Proposition 7 If a� 2 A is e¢ cient and (a�; a�) is a strict Nash equilibrium
of G, then (a�; a�) is stable for all p 2 (0; 1).

In studying imperfectly observable preferences, we are particularly inter-
ested in whether the results about stability in the observable (respectively,
unobservable) preferences case continue to hold for high (respectively, low)
values of probability of observability. In other words, are the stability results
of previous sections �continuous�in p?
In Proposition 6, we showed that if � is an NSS, then the outcome induced

by (�; �) is stable when preferences are unobservable. The following example
demonstrates that even a weaker version of this is not true in the case of
imperfectly observable preferences, even for arbitrarily small values of p:
(B;B) is a strict Nash equilibrium, but it is not stable for any p > 0: Notice,
as well, that (B;B) is also the risk-dominant equilibrium.18

Example 1 Consider the following game:

A B
A 6 0
B 5 2

We will show that even though (B;B) is a strict Nash equilibrium, it is
not stable for any p > 0: Suppose that (B;B) is stable with distribution �.
Notice that every incumbent must have preferences for which B is a best-
response to itself. Consider the coordination type, AB�, where 0 < � � p,
as the entrant. There is a post-entry focal equilibrium in which entrants
play A if they observe each other, and play B otherwise, and the incumbents
continue to play B regardless of what they observe. To see this, note that
incumbents�opponents are playing B for sure, so it is a best-response for
them to continue to play B. When an entrant observes an incumbent, she
knows for sure that her opponent is playing B. When she does not observe
anything, she is very likely to be facing an incumbent (who plays B) as an
opponent. In either case it is optimal for the entrant to play B. When an
entrant observes another entrant who plays A with probability p A must be
her best-response, and this happens as long as the entrant�s type assigns a

18In symmetric 2�2 games, a strategy is risk-dominant (Harsanyi and Selten, 1988) if it
is a better response to a mixed strategy where both strategies are played with probability
1=2.
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high enough payo¤ to (A;A), i.e., � � p in our normalization. For this post-
entry equilibrium we speci�ed, incumbents�and entrants��tnesses are given
by

��(: j :) = 2; 8� 2 C(�);
and

�AB�(: j :) = (1� ")2 + "[6p2 + 5p(1� p) + 2(1� p)2]:
Since �AB�(: j :) > 2 for p > 0; and hence (B;B) is not stable for any p > 0:
We next show that a version of the �stable only if e¢ cient�result of the

observable preferences case holds for high enough probability of observability:
The outcome of a symmetric pure-strategy pro�le is not stable for p high
enough, if that strategy is not e¢ cient.

Proposition 8 If there exists a � 2 � such that �(a; a) < �(�; �); then
there exists a p 2 (0; 1) such that (a; a) is not stable for p 2 (p; 1):

Combining this result with the previous example, we provide some sup-
port for e¢ ciency in coordination games:

Corollary 2 Consider (strict) coordination games. The outcome of the risk-
dominant equilibrium is not stable for large enough p, unless the equilibrium
is also payo¤-dominant. There exist games in which the outcome of the risk-
dominant equilibrium is not stable for any p > 0. In contrast, the outcome
of the payo¤-dominant equilibrium is stable for all p > 0:

The selection between the risk-dominant and the payo¤-dominant equi-
librium in coordination games have been studied extensively in evolution-
ary models.19 The risk-dominant equilibrium is selected in the models of
Ellison (1993), Kandori, Mailath and Rob (1993), and Young (1993); the
payo¤-dominant equilibrium is favored in Ely (2002) and Robson and Vega
Redondo (1996); in Binmore and Samuelson (1997) either can be selected.
Evolutionary analysis of cheap-talk games provide extensive support for e¢ -
ciency. (See, for example, Bhaskar (1998), Kim and Sobel (1995), and Matsui
(1991).)
To conclude, we show that a version of the �stable only if Nash�result

of the unobservable preferences case holds for low enough probability of ob-
servability: If a pure-strategy pro�le is not a Nash equilibrium, then it is not
stable for p low enough.
19Among the nonevolutionary models, Harsanyi and Selten (1988) selects the payo¤-

dominant, whereas Carlsson and van Damme (1993) selects the risk-dominant equilibrium.
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Proposition 9 If (a; a) is not a Nash equilibrium of G, then there exists a
p 2 (0; 1) such that (a; a) is not stable for p 2 (0; p):

6 Appendix

Proof of Proposition 1. First we will show that if x is stable (with �
and b), then all the types in � obtain the same �tness, in b, when they are
matched with any given type. Then we show that any given type gets the
same �tness when it is matched with any other type, hence obtaining the
average �tness in each and every match, proving the �rst equality. This, in
particular, means that any type will receive the average �tness when it is
matched against itself. Since each type has to play a symmetric equilibrium
when matched against itself, the average �tness must be equal to the payo¤
of a symmetric strategy pro�le (�; �) in G:
Claim i) :

�(b1(�
0
; �); b2(�

0
; �)) = �(b1(�

00
; �); b2(�

00
; �))8�; �0 ; �00 2 C(�):

Let �o be the type who is indi¤erent between all the actions against any
action of the opponent. Suppose that x is stable (with � and b). Let
m(�) 2 argmax

�
0

�(b1(�
0
; �); b2(�

0
; �)), i.e., m(�) is the incumbent which gets

the highest (equilibrium) �tness. Let �o be the entrant, and consider the equi-
librium con�guration b; where (b1(�

o; �); b2(�
o; �)) = (b1(m(�); �); b2(m(�); �))

for all � 2 C(�), and b1(�o; �o) = b2(�
o; �o) = argmax

�2�
�(�; �): This can be

done, because any equilibrium in the match between � and �
0
is also an

equilibrium between � and �o; since �o�s best-response set includes any other
type�s best-response set. Now, suppose that the claim above is not true, then
there exists a � 2 C(�) such that

��o((1� ")�+ "�o j b) > ��((1� ")�+ "�o j b)
for all " > 0; showing that x is not stable (with � and b), a contradiction.
Claim ii):

�(b1(�; �
0
); b2(�; �

0
)) = ��(� j b)8�; �

0 2 C(�):
Suppose that x is stable (with � and b), and the statement above is not true.
There must exist �, �� 2 C(�) such that

�(b1(�; �
�); b2(�; �

�)) < ��(� j b);
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since the average �tness of � is ��(� j b): Now, the claim proven above implies
that

�(b1(�
�; ��); b2(�

�; ��)) = �(b1(�; �
�); b2(�; �

�)) < ��(� j b):
Let �o be the entrant, and consider the equilibrium con�guration b; where
(b1(�

o; �
0
); b2(�

o; �
0
)) = (b1(�

�; �
0
); b2(�

�; �
0
)) for all �

0 2 C(�); and (b1(�o; �o); b2(�o; �o)) =
(b1(e�;e�); b2(e�;e�)); where e� is chosen such that

�(b1(�;e�); b2(�;e�)) > ��(� j b):
(Such a e� must exist, since the average �tness of � is ��(� j b):) The average
�tnesses of �� and �o, when �o�s population share is "; respectively, are:

���((1� ")�+ "�o j b) = (1� ")��(� j b) + "�(b1(��; ��); b2(��; ��));

��o((1� ")�+ "�o j b) = (1� ")��(� j b) + "�(b1(�o; �o); b2(�o; �o));
since �o is imitating ���s behavior against all incumbents, including itself.
Now, we have,

�(b1(�
o; �o); b2(�

o; �o)) = �(b1(e�;e�); b2(e�;e�))
= �(b1(�;e�); b2(�;e�)) > ��(� j b) > �(b1(��; ��); b2(��; ��))

where the second inequality follows from Claim i) above. So,

��o((1� ")�+ "�o j b) > ���((1� ")�+ "�o j b)

for all " > 0; and hence x is not stable (with � and b), a contradiction.
Proof of Proposition 2. Consider a monomorphic population �;

consisting of �; for which a� strictly dominates any other strategy. Clearly,
� is stable with respect to (a�; a�) via the unique equilibrium con�guration b
in which everyone plays a�. Let �

0
be any entrant and b be any equilibrium

con�guration in the post-entry population. � will play a� regardless of the
opponent�s type; suppose, in b; �

0
plays � and �

0
when matched against �

and itself, respectively. We have

��((1� ")� + "�
0 j b) = (1� ")�(a�; a�) + "�(a�; �);

and
�
�
0 ((1� ")� + "�0 j b) = (1� ")�(�; a�) + "�(�0 ; �0):
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Now, if � 6= a�, then �(a�; a�) > �(�; a�), since (a�; a�) is a strict Nash
equilibrium. If � = a�, the hypothesis of the proposition implies that
�(a�; �) = �(a�; a�) � �(�

0
; �

0
) for any �

0 2 �: In either case we can �nd
an "

0
> 0 such that ��(:) � ��0 (:) for all " 2 (0; "

0
), showing that (a�; a�) is

stable.
Proof of Proposition 3. Suppose that x is stable (with � and b).

Proposition 1 and the e¢ ciency of �� imply that

��(� j b) � �(��; ��):

Now, suppose that
��(� j b) < �(��; ��):

Let �o be the entrant, and choose the post-entry equilibrium con�guration b
such that:
i) The equilibrium when �o and any incumbent �

0 2 C(�) are matched is
the same as the equilibrium played when �

0
and � 2 C(�) are matched, i.e.,

(b1(�; �
o); b2(�; �

o)) = (b1(�; �
0
); b2(�; �

0
)) for all �

0 2 C(�):
ii) When �o is matched against itself (��; ��) is played. Then, we have

��((1� ")�+ "�o j b) = (1� ")��(� j b) + "�(b1(�; �o); b2(�; �o));

and

��o((1� ")�+ "�o j b) = (1� ")��(� j b) + "�(b1(�o; �o); b2(�o; �o)):

Since (b1(�; �
o); b2(�; �

o)) = (b2(�; �
o); b1(�; �

o)) = (b1(�; �); b2(�; �)), it follows
from Proposition 1 that

�(b1(�; �
o); b2(�; �

o)) = ��(� j b):

Moreover,
�(b1(�

o; �o); b2(�
o; �o)) = �(��; ��) > ��(� j b):

Hence, for all " > 0;

��o((1� ")�+ "�o j b) > ��((1� ")�+ "�o j b);

showing that x is not stable, a contradiction.
Proof of Proposition 4. a) (A is e¢ cient) We will consider two cases:
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i) a > c : In this case, which consists of coordination games and games in
which the e¢ cient (pure) strategy (A) strictly dominates the other strategy
(B), Proposition 2 implies that (A;A) is stable.
ii) a � c : In this case, which consists of Prisoners�Dilemma and Hawk-

Dove games, (A;A) is stable with a monomorphic population of AB1. AB1 is
the type for which both A and B are best responses to A, and B is the unique
best response to B. Consider a monomorphic population consisting of AB1;
and the equilibrium con�guration in which they play (A;A). Let � be any
entrant and b be any equilibrium con�guration in the post-entry population.
Suppose that in b, the equilibrium between AB1 and � is (�1; �2); and the
equilibrium when � is matched with itself is (�3; �3): The expected �tness to
the incumbent and the entrant are, respectively,

�AB1((1� ")AB1 + "� j b) = (1� ")a+ "�(�1; �2);

and
��((1� ")AB1 + "� j b) = (1� ")�(�2; �1) + "�(�3; �3):

In any equilibrium against any type of the opponent, AB1 plays A with
positive probability only if the opponent plays A with probability one, i.e.,
�1(A) > 0 ) �2 = A: Suppose �2 = A; in which case AB1 is indi¤erent
between A and B, and consider all possible equilibria. The expected �tness
to the incumbent and the entrant are, respectively,

�AB1(:) = (1� ")a+ "[qa+ (1� q)c];

and
��(:) = (1� ")[qa+ (1� q)b] + "�(�3; �3);

where q 2 [0; 1]: Since c � a; e¢ ciency of A implies that a � b: So,

a � qa+ (1� q)b:

Also, e¢ ciency of A implies that

qa+ (1� q)c � a � �(�3; �3)

for any �3 2 �: Hence, �AB1(:) � ��(:), irrespective of "; proving that (A;A)
is stable.
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Now, suppose that �2 6= A; which implies that �1 = B: Considering all
possible equilibrium con�gurations, the expected �tness to the incumbent
and the entrant are, respectively,

�AB1(:) = (1� ")a+ "[qc+ (1� q)d];

and
��(:) = (1� ")[qb+ (1� q)d] + "�(�3; �3);

where q 2 [0; 1]: We have a � qb + (1 � q)d; since a � b and a � d: If
the inequality is strict, then we are done: we can �nd "

0
> 0 such that

�AB1(:) � ��(:) for all " 2 (0; "
0
): So, suppose that a = qb + (1� q)d. Now,

we have
qc+ (1� q)d � qb+ (1� q)d = a � �(�3; �3)

for any �3 2 �: Hence, �AB1(:) � ��(:), irrespective of "; proving that (A;A)
is stable.
b) (A is not e¢ cient) Let �� = argmax

�2�
�(�; �), i.e.,

�� = ��(A) =
b+ c� 2d

2(b+ c� a� d) 2 (0; 1);

and ��(B) = 1���: Notice that �(��; ��) = d+ (b+c�2d)2
4(b+c�a�d) . Since �(�

�; ��) >
a implies that b + c > 2a, we know that �� is unique. Thus, Propositions
1 and 3 imply that, if an outcome is stable, then (��; ��) must be played
in each matching within the stable distribution. So any stable distribution
must be a distribution on fAB��, BA��,�og:We now consider four classes of
2� 2 games in turn:
i) a � c and d � b (Coordination games): A is always an e¢ cient strategy

for this class of games.
ii) a � c and b � d: If c � b; then A is e¢ cient. So, let b > c. Suppose

that the outcome induced by (��; ��) is stable. We can show that AB0 can
enter and obtain strictly higher expected �tness against incumbents than the
incumbents obtain against themselves in the equilibrium con�guration (b) in
which AB0 mixes between A and B (playing A with probability ��) and the
incumbents play B when they are matched. Let � be the stable distribution.
We have, for any � 2 �;

��((1� ")�+ "AB0 j b) = (1� ")�(��; ��) + "[��c+ (1� ��)d];

24



and

�AB0((1� ")�+ "AB0 j b) = (1� ")[��b+ (1� ��)d] + "�(�; �):

It is easy to show that, for b > c,

��b+ (1� ��)d > �(��; ��):

Hence, we do not have stability.
iii) c � a and d � b (Prisoners�Dilemma): We have c � b. If c = b; then

A is e¢ cient. So, let c > b. Suppose that � is a stable distribution. Let AB1
be the entrant, and consider the equilibrium con�guration in which when it
is matched with incumbents the mixed strategy equilibrium is played (AB1
playing A with probability ��, and incumbents playing A). The entrant�s
expected �tness from its encounters with the incumbents are

��a+ (1� ��)c > �(��; ��);

which shows that � is not a stable distribution, a contradiction.
iv) c � a and b � d (Hawk-Dove): If b > c (respectively, c > b), then

the exact arguments in case ii) (respectively, iii)) apply, so there is no stable
outcome. If b = c, then the monomorphic population of AB�� is stable.
Let � be any entrant and b be any equilibrium con�guration in the post-
entry population. Suppose that in b, the equilibrium between AB�� and � is
(�1; �2); and the equilibrium when � is matched with itself is (�3; �3): The
expected �tness to the incumbent and the entrant are, respectively,

�AB�� ((1� ")AB�� + "� j b) = (1� ")�(�
�; ��) + "�(�1; �2);

and
��((1� ")AB�� + "� j b) = (1� ")�(�2; �1) + "�(�3; �3):

If �2 = A (respectively, B), then �1 = A (respectively, B); in either case
�(��; ��) > �(�2; �1): In the mixed strategy equilibrium, the entrant must
play A with probability ��; in which case, straightforward calculations show
that, max

�12�
�(�2; �1) = �(�

�; ��): Therefore, AB�� is stable.
Proof of Proposition 5. a) Propositions 1 and 3 imply that, if an

outcome is stable, then (A;A) must be played in each matching within the
stable distribution. So M(G) must be a subset of fAA, AB�, BA1, �og;
� 2 [0; 1]: Moreover if an entrant receives a against any incumbent, then,
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the genericity of G implies that the incumbent must receive a as well in
that equilibrium. So for stability we only need to check whether there is an
entrant which can obtain �tness greater than a against any incumbent in any
equilibrium.
i) In this case �tness from (A;A) (which is a) is greater than �tness

from any other strategy pro�le. Therefore any type for which (A;A) is an
equilibrium can be in a stable distribution.
ii) If a stable distribution contains BA1 or �o; AA can enter and obtain

b > a in the matchings against BA1 and �o; thereby getting a higher average
�tness than BA1 and �o in any post-entry equilibrium con�guration. Now,
suppose that a stable distribution contains AB�, where �>a�d

b�d : AB0 can
enter, and in the equilibrium between AB0 and AB� in which AB0 plays A
with probability � and AB� plays A, obtain �b+(1��)d > a: AA is stable
because any entrant in any equilibrium receives a convex combination of a
and c, which is less than or equal to a. AB�; where � � a�d

b�d , is stable since
any entrant in any pure strategy equilibrium gets a or d, and the highest that
it gets in a mixed strategy equilibrium is either �b+(1��)d or �a+(1��)c,
which are both less than or equal to a.
iii) We showed in the proof of Proposition 4 that AB1 is stable. Now

suppose that a stable distribution contains AA, BA1 or �o: AB1 can enter.
There is an equilibrium between AB1 and AA (also BA1 and �o) in which
AB1 plays B and AA plays A, which gives AB1 a �tness of c > a. Suppose
that a stable distribution contains AB�, where � 2 [0; 1): There is an equi-
librium in which AB1 mixes between A and B, and AA plays A, which gives
AB1 a �tness of �a+(1��)c > a. Hence AB1 is the only stable distribution.
b) Propositions 1 and 3 imply that, if an outcome is stable, then (��; ��)

must be played in each matching within the stable distribution. So M(G)
must be a subset of fAB��, BA��, �og:We showed in the proof of Proposition
4 that AB�� is stable. Suppose that a stable distribution contains BA�� or
�o: AA enters and obtains b > a in the matchings with BA�� and �o: Hence
AB�� is the only stable distribution.
Proof of Proposition 6. i) (only if) The proof is by contradiction. If

� 2 � is not an NSS, then there exists �
0 2 � such that

�(�
0
; (1� ")� + "�0) > �(�; (1� ")� + "�0);

for arbitrarily small ". Suppose that (�; �) is stable with some � 2 P(�)
and b 2 B(�), but � is not an NSS. Consider an entrant � such that �0 is
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a best response to (1 � ")� + "�0 for all " > 0: (Such a � always exists, for
example �o, the type which is indi¤erent between all the outcomes.) If the
set of focal post-entry equilibria, B((1 � ")� + "� j b); is empty, then (�; �)
is not stable, a contradiction. So, suppose that the set of focal post-entry
equilibria is non-empty. Since the aggregate play by incumbents are given
by � in all focal equilibria, there exists b 2 B((1� ")�+ "� j b); for which we
have

��((1� ")�+ "� j b) = �(�
0
; (1� ")� + "�0) > �(�; (1� ")� + "�0):

Since �(�; (1�")�+"�0) is the average expected �tness of incumbents, there
exists a �

0 2 C(�) such that

��((1� ")�+ "� j b) > ��0 ((1� ")�+ "� j b);

showing that (�; �) is not stable, a contradiction.
ii) (if) Suppose that � is an NSS, and consider the monomorphic popu-

lation consisting of �o�s, where everyone is playing �. For any entrant, the
set of focal post-entry equilibria is, clearly, non-empty. Consider any focal
post-entry equilibrium, b; in which the entrant, �; plays �

0
. We have

��o((1�")�o+"� j b) = �(�; (1�")�+"�
0
) � �(�0 ; (1�")�+"�0) = ��((1�")�o+"� j b);

where the inequality follows from the fact that � is an NSS. Hence, (�; �) is
stable.
Proof of Proposition 7. Consider a monomorphic population consist-

ing of �; for which a� strictly dominates any other strategy. Let �
0
be any

entrant and b be any focal equilibrium in the post-entry population. � will
play a� regardless of whether she observes the entrant�s preferences or not.
We have

��((1� ")�+ "�
0 j b) = (1� ")�(a�; a�) + "[p�(a�; b

�
0 (�)) + (1� p)�(a�; b

�
0 )];

and

�
�
0 ((1� ")�+ "�0 j b) = (1� ")[p�(b

�
0 (�); a�) + (1� p)�(b

�
0 ; a�)] + "[p2�(b

�
0 (�

0
); b

�
0 (�

0
))

+p(1� p)�(b
�
0 (�

0
); b

�
0 ) + p(1� p)�(b

�
0 ; b

�
0 (�

0
)) + (1� p)2�(b

�
0 ; b

�
0 )]:

Now, notice that, unless b
�
0 (�) = b

�
0 = a�,

�(a�; a�) > p�(b
�
0 (�); a�) + (1� p)�(b

�
0 ; a�);
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since (a�; a�) is a strict Nash equilibrium, and hence we can �nd an "
0
> 0

such that ��(: j :) > ��0 (: j :) 8" 2 (0; "
0
); making (a�; a�) stable. So, suppose

that b
�
0 (�) = b

�
0 = a�: In this case, we have

�
�
0 (: j :) = �(a�; a�);

and

�
�
0 (: j :) = (1� ")�(a�; a�) + "[p2�(b

�
0 (�

0
); b

�
0 (�

0
)) + p(1� p)�(b

�
0 (�

0
); a�) +

p(1� p)�(a�; b
�
0 (�

0
) + (1� p)2�(a�; a�)]:

Since a� is e¢ cient,

�(a�; a�) � p2�(b
�
0 (�

0
); b

�
0 (�

0
))+p(1�p)�(b

�
0 (�

0
); a�)+p(1�p)�(a�; b

�
0 (�

0
)+(1�p)2�(a�; a�)]:

Therefore, ��(: j :) � ��0 (: j :) for all " � 0, proving that (a�; a�) is stable.

Proof of Proposition 8. Suppose that (a; a) is stable with �: Let
�o be the entrant, with share ": For all "; there exists a post-entry focal
equilibrium in which incumbents play a regardless of what they observe, and
�o plays a after observing any incumbent or observing nothing, and plays �;
where �(�; �) > �(a; a); after observing itself. We have

��(: j :) = �(a; a); 8� 2 C(�);

and

��o (: j :) = (1�")�(a; a)+"[p2�(�; �)+p(1�p)�(�; a)+p(1�p)�(a; �)+(1�p)2�(a; a):

Since �(�; �) > �(a; a), there exists a p 2 (0; 1) such that (a; a) is not stable
for p 2 (p; 1):
Proof of Proposition 9. Suppose that (a; a) is stable with �: If (a; a) is

not a Nash Equilibrium, then there exists a� 2 A such that �(a�; a) > �(a; a):
Let the entrant, �

0
; be such that a� strictly dominates any other strategy. For

all focal equilibria

��(: j :) = (1� ")�(a; a) + "[p�(b�(�
0
); a�) + (1� p)�(a; a�)]; 8� 2 C(�);

and

�
�
0 (: j :) = (1� ")[p

X
�2C(�)

�(a�; b�(�
0
)) + (1� p)�(a�; a)] + "�(a�; a�):
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Since �(a�; a) > �(a; a), there exists a p 2 (0; 1) such that for all p 2 (0; p);

p
X
�2C(�)

�(a�; b�(�
0
)) + (1� p)�(a�; a) > �(a; a);

showing that (a; a) is not stable for p 2 (0; p):
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