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Abstract 
 
A hedonic regression regresses the price of various models of a product (or service) on 
the characteristics that describe the product.  The issue that is addressed in this paper is 
the following one: if information on the prices and quantities purchased of the various 
models is available, then how should this extra information be used?  The paper suggests 
various methods of weighting that might be used in an adjacent period dummy time 
variable hedonic regression framework.  Some of the ideas that are present in the test 
approach to index number theory are used in an attempt to cast some light on the 
consequences of different types of weighting.  Section 2 weighting in a single period 
hedonic regression framework.  Section 3 discusses the adjacent period hedonic 
regression model without weighting.  Section 4 introduces weighting into the adjacent 
period framework and the ideas developed in the earlier sections are applied.  Section 5 
specializes the general model of section 4 to the “pure” dummy variable approach to the 
specification of characteristics of models and section 6 concludes. 
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1. Introduction 
 
Some recent publications have revived interest in the topic of hedonic regressions.  The 
first publication is Chapter 4 in Schultze and Mackie (2002), where a rather cautious 
approach to the use of hedonic regressions was advocated due to the fact that many issues 
had not yet been completely resolved.  A second paper by Heravi and Silver (2002) also 
raised questions about the usefulness of hedonic regressions since this paper presented 
several alternative hedonic regression methodologies and obtained different empirical 
results using the alternative models.2  Finally, the comprehensive monograph by Triplett 
(2004) argued strongly in favor of the use of hedonic regression methods to adjust prices 
for quality changes over other methods that have been suggested. 
 
One important problem area associated with the use of hedonic regressions is the issue of 
whether the regressions should be weighted or not.  This is the issue that we will address 
in this chapter.3  Our approach to answering this question will be somewhat novel: we 
will try to use ideas that occur in the index number literature on weighting to help guide 
us in evaluating alternative approaches to the weighting question in the hedonic 
regression context.  Thus consider the problem of constructing a Consumer Price Index 
that compares prices between two periods.  Index number theory approaches to this 
problem end up constructing a CPI between the two periods as a share weighted average 
of the price relatives for all the commodities in the domain of definition of the index that 
can be matched between the two periods.  Hedonic regressions are used to extend this 
framework to situations where the quality of the commodities may change over time (and 
so complete matching across the two periods is not possible) but the overall goal is the 
same as with a standard CPI: we want a single number that describes the “average” price 
change between the two periods.  Thus in this chapter, we will focus on the dummy 
variable adjacent year hedonic regression technique initially suggested by Court (1939; 
109-111) and used by Berndt, Griliches and Rappaport (1995; 260) and many others, 
since this hedonic regression framework gives us an unambiguous measure of price 
change between the two periods under consideration.4   
 
Our general strategy will be to suggest various methods of weighting that might be used 
in this adjacent period dummy time variable hedonic regression framework, look at the 
resulting measures of overall price change but then specialize the model to the matched 
model context so that the resulting measure of price change can be compared to more 
traditional index number measures of overall price change.  Thus we set the stage for this 
methodology by first discussing weighting in a single period hedonic regression 
framework in section 2 and then in section 3, we discuss the adjacent period hedonic 
regression model without weighting.  In section 4, we introduce weighting into the 
adjacent period framework and apply our index number type methodology.  Section 5 
                                                 
2 The observation that different variants of hedonic regression techniques can generate quite different 
answers empirically dates back to Triplett and McDonald (1977; 150) at least. 
3 The only extensive discussion of this issue that I am aware of is by Triplett (2004; 189-194). 
4 When we estimate separate hedonic regressions for both periods, there are many ways that this 
information from the two regressions can be used in order to obtain a single overall measure of price 
change; see Silver and Heravi (2002) (2003) (2004) (2005) and Triplett (2004) for discussions and 
comparisons of these various methods. 
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specializes the general model of section 4 to an interesting case considered by Aizcorbe, 
Corrado and Doms (2000), who introduced a “pure” dummy variable approach to the 
specification of characteristics of models in addition to the usual time dummies.  Section 
6 concludes and an Appendix presents proofs of the various results that are used in 
sections 3-5.  
 
2. Quantity Weights versus Expenditure Weights 
 
As an introduction to our main topic, we discuss alternative methods of weighting model 
prices in a single equation hedonic regression.  Thus if information on model prices, 
characteristics and sales to households is available to a statistical agency producing a 
Consumer Price Index, then how exactly could the extra information on sales be used in 
running a single period hedonic regression? 
  
We introduce some notation at this point.  We suppose that price data have been collected 
on K models or varieties of a commodity for some period t.5  Thus pk

t is the price of 
model k in period t and k∈S(t) where S(t) is the set of models that are actually purchased 
by households in period t.  For k∈S(t), denote the number of these type k models sold 
during period t by qk

t.6  We suppose also that information is available on N relevant 
characteristics of each model.  The amount of characteristic n that model k possesses in 
period t is denoted as zkn

t for n = 1,...,N and k∈S(t).  Define the N dimensional vector of 
characteristics for model k in period t as zk

t ≡ [zk1
t,zk2

t,...,zkN
t] for k∈S(t).  We shall 

consider only linear hedonic regressions in this chapter.  Hence, the unweighted linear 
hedonic regression for period t has the following form:7 
 
(1) f(pk

t) = β0
t + ∑n=1

N fn(zkn
t)βn

t + εk
t ;                                                k∈S(t)  

 
where the βn

t are unknown parameters to be estimated, the εk
t are independently 

distributed error terms with mean 0 and variance σ2 and the functions f and fn are known 
functions that are used to transform the data (typically, they are either the identity 
function, the logarithm function or a dummy variable which takes on the value 1 if the 
characteristic n is present in model k or 0 otherwise).   
 
Usually, econometric discussions of how to use quantity or expenditure weights in a 
hedonic regression are centered around discussions on how to reduce the 
heteroskedasticity of error terms.  In this section, we attempt a somewhat different 
approach based on an idea taken from index number theory—namely that the regression 
model should be representative.  In other words, if model k sold qk

t times in period t, then 
perhaps model k should be repeated in the period t hedonic regression qk

t times so that 

                                                 
5 Models purchased in different outlets can be regarded as separate varieties or not, depending on the 
context. 
6 If a particular model k is purchased at various prices during period t, then we interpret qk

t as the total 
quantity of model k that is sold in period t and pk

t as the corresponding average price or unit value. 
7 Note that the linear regression model defined by (1) can only provide a first order approximation to a 
general hedonic function.  Diewert (2003a) made a case for considering second order approximations but in 
this chapter, we will follow current practice and consider only linear approximations. 
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the period t regression is representative of the sales that actually occurred during the 
period.8 
 
To illustrate this idea, suppose that in period t, only three models were sold and there is 
only one continuous characteristic.  Let the period t price of the three models be p1

t, p2
t 

and p3
t and suppose that the three models have the amounts z11

t, z21
t and z31

t of the single 
characteristic respectively.  Then the period t unweighted regression model (1) has only 
the following 3 observations and 2 unknown parameters, β0

t and β1
t : 

 
(2) f(p1

t) = β0
t + f1(z11

t)β1
t + ε1

t ; 
      f(p2

t) = β0
t + f1(z21

t)β1
t + ε2

t ; 
      f(p3

t) = β0
t + f1(z31

t)β1
t + ε3

t . 
 
Note that each of the 3 observations gets an equal weight in the period t hedonic 
regression model defined by (2).  However, if say models 1 and 2 are vastly more popular 
than model 3, then it does not seem to be appropriate that model 3 gets the same 
importance in the regression as models 1 and 2.   
 
Suppose that the integers q1

t, q2
t and q3

t are the amounts sold in period t of models 1,2 
and 3 respectively.  Then one way of constructing a hedonic regression that weights 
models according to their economic importance is to repeat each model observation 
according to the number of times it sold in the period.  This leads to the following more 
representative hedonic regression model, where the error terms have been omitted: 
 
(3) 11f(p1

t) = 11β0
t + 11f1(z11

t)β1
t ; 

      12f(p2
t) = 12β0

t + 12f1(z21
t)β1

t ; 
      13f(p3

t) = 13β0
t + 13f1(z31

t)β1
t  

 
where 1k is a vector of ones of dimension qk

t for k = 1,2,3. 
 
Now consider the following quantity transformation of the original unweighted hedonic 
regression model (2): 
 
(4) (q1

t)1/2 f(p1
t) = (q1

t)1/2 β0
t + (q1

t)1/2 f1(z11
t)β1

t + ε1
t* ; 

      (q2
t)1/2 f(p2

t) = (q2
t)1/2 β0

t + (q2
t)1/2 f1(z21

t)β1
t + ε2

t* ; 
      (q3

t)1/2 f(p3
t) = (q3

t)1/2 β0
t + (q3

t)1/2 f1(z31
t)β1

t + ε3
t* . 

 
Comparing (2) and (4), it can be seen that the observations in (4) are equal to the 
corresponding observations in (2), except that the dependent and independent variables in 

                                                 
8 Thus our representative approach follows along the lines of Theil’s (1967; 136-138) weighted stochastic 
approach to index number theory, which is also pursued by Clements and Izan (1981), Selvanathan and 
Rao (1994), Rao (2002) and Diewert (1995) (2004).  The use of weights that reflect the economic 
importance of models was recommended by Griliches (1971b; 8): “But even here, we should use a 
weighted regression approach, since we are interested in an estimate of a weighted average of the pure 
price change, rather than just an unweighted average over all possible models, no matter how peculiar or 
rare.”  However, he did not make any explicit weighting suggestions. 
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observation k of (2) have been multiplied by the square root of the quantity sold of model 
k in period t for k = 1,2,3 in order to obtain the observations in (4).  A sampling 
framework for (4) is available if we assume that the transformed residuals εk

t* are 
independently normally distributed with mean zero and constant variance.  
 
Let b0

t and b1
t denote the least squares estimators for the parameters β0

t and β1
t in (3) and 

let b0
t* and b1

t* denote the least squares estimators for the parameters β0
t and β1

t in (4).  
Then it is straightforward to show that these two sets of least squares estimators are the 
same9; i.e., we have: 
 
(5) [b0

t,b1
t] = [b0

t*,b1
t*]. 

 
Thus a shortcut method for obtaining the least squares estimators for the unknown 
parameters, β0

t and β1
t, which occur in the “representative” model (3) is to obtain the 

least squares estimators for the transformed model (4).  This equivalence between the two 
models provides a justification for using the weighted model (4) in place of the original 
model (2).  The advantage in using the transformed model (4) over the “representative” 
model (3) is that we can develop a sampling framework for (4) but not for (3), since the 
(omitted) error terms in (3) cannot be assumed to be distributed independently of each 
other.10  However, in view of the equivalence between the least squares estimators for 
models (3) and (4), we can now be comfortable that the regression model (4) weights 
observations according to their quantitative importance in period t.  Hence if we take the 
point of view that regards weighting according to economic importance as fundamental, 
then we can recommend the use of the weighted hedonic regression model (4) over its 
unweighted counterpart (2). 
 
However, rather than weighting models by their quantity sold in each period, it is 
possible to weight each model according to the value of its sales in each period.  Thus 
define the value of sales of model k in period t to be: 
 
(6) vk

t ≡ pk
tqk

t ;                                                                            k∈S(t). 
 
Now consider again the simple unweighted hedonic regression model defined by (2) 
above and round off the sales of each of the 3 models to the nearest dollar (or penny).  
Let 1k* be a vector of ones of dimension vk

t for k = 1,2,3.  Repeating each model in (2) 
according to the value of its sales in period t leads to the following more representative 
period t hedonic regression model (where the errors have been omitted): 
 
                                                 
9 See, for example, Greene (1993; 277-279).  However, the numerical equivalence of the least squares 
estimates obtained by repeating multiple observations or by the square root of the weight transformation 
was noticed long ago as the following quotation indicates: “It is evident that an observation of weight w 
enters into the equations exactly as if it were w separate observations each of weight unity.  The best 
practical method of accounting for the weight is, however, to prepare the equations of condition by 
multiplying each equation throughout by the square root of its weight.”  E. T. Whittaker and G. Robinson 
(1940; 224).    
10 It is possible to develop a descriptive statistics interpretation for b0

t and b1
t, the least squares estimators 

for the β0
t and β1

t parameters in (3); see section 8 in Diewert (2004). 
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(7) 11*f(p1
t) = 11*β0

t + 11*f1(z11
t)β1

t ; 
      12*f(p2

t) = 12*β0
t + 12*f1(z21

t)β1
t ; 

      13*f(p3
t) = 13*β0

t + 13*f1(z31
t)β1

t . 
 
Now consider the following value transformation of the original unweighted hedonic 
regression model (2): 
 
(8) (v1

t)1/2 f(p1
t) = (v1

t)1/2 β0
t + (v1

t)1/2 f1(z11
t)β1

t + ε1
t** ; 

      (v2
t)1/2 f(p2

t) = (v2
t)1/2 β0

t + (v2
t)1/2 f1(z21

t)β1
t + ε2

t** ; 
      (v3

t)1/2 f(p3
t) = (v3

t)1/2 β0
t + (v3

t)1/2 f1(z31
t)β1

t + ε3
t** . 

 
Comparing (2) and (8), it can be seen that the observations in (8) are equal to the 
corresponding observations in (2), except that the dependent and independent variables in 
observation k of (2) have been multiplied by the square root of the value sold of model k 
in period t for k = 1,2,3 in order to obtain the left hand side variables in (8).  Again, a 
sampling framework for (8) is available if we assume that the transformed residuals εk

t** 
are independently distributed normal random variables with mean zero and constant 
variance.  
 
Again, it is straightforward to show that the least squares estimators for the parameters β0

t 
and β1

t in (7) and (8) are the same.  Thus a shortcut method for obtaining the least squares 
estimators for the unknown parameters, β0

t and β1
t, which occur in the value weights 

representative model (7) is to obtain the least squares estimators for the transformed 
model (8).  This equivalence between the two models provides a justification for using 
the value weighted model (8) in place of the value weights representative  model (7).  As 
before, the advantage in using the transformed model (8) over the value weights 
representative model (7) is that we can develop a sampling framework for (8) but not for 
(7), since the (omitted) error terms in (7) cannot be assumed to be distributed 
independently of each other.   
 
From the viewpoint of index number theory, it seems to us that the quantity weighted and 
value weighted models are clear improvements over the original unweighted model (2).  
Our reasoning here is similar to that used by Fisher (1922; Chapter III) in developing 
bilateral index number theory, who argued that prices needed to be weighted according to 
their quantitative or value importance in the two periods being compared.11  In the 
                                                 
11 “It has already been observed that the purpose of any index number is to strike a ‘fair average’ of the 
price movements—or movements of other groups of magnitudes.  At first a simple average seemed fair, 
just because it treated all terms alike.  And, in the absence of any knowledge of the relative importance of 
the various commodities included in the average, the simple average is fair.  But it was early recognized 
that there are enormous differences in importance.  Everyone knows that pork is more important than 
coffee and wheat than quinine.  Thus the quest for fairness led to the introduction of weighting.”  Irving 
Fisher (1922; 43).  “But on what principle shall we weight the terms?  Arthur Young’s guess and other 
guesses at weighting represent, consciously or un consciously, the idea that relative money values of the 
various commodities should determine their weights.  A value is, of course, the product of a price per unit, 
multiplied by the number of units taken.  Such values afford the only common measure for comparing the 
streams of commodities produced, exchanged, or consumed, and afford almost the only basis of weighting 
which has ever been seriously proposed.”  Irving Fisher (1922; 45). 
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present context, we have a weighting problem that involves only one period so that our 
weighting problems are actually much simpler than those considered by Fisher: we need 
only choose between quantity or value weights! 
 
But which system of weighting is better in our present context: quantity or value 
weighting? 
 
The problem with quantity weighting is this: it will tend to give too little weight to 
models that have high prices and too much weight to cheap models that have low 
amounts of useful characteristics.  Hence in the single period context, it appears to us that 
value weighting is clearly preferable.  Thus we are taking the point of view that the main 
purpose of a period t hedonic regression is to enable us to decompose the market value of 
each model sold, pk

tqk
t, into the product of a period t price for a quality adjusted unit of 

the hedonic commodity, say Pt, times a constant utility total quantity for model k, Qk
t.  

Hence observation k in period t should have the representative weight Qk
t in constant 

utility units that are comparable across models.  But Qk
t is equal to pk

tqk
t/Pt, which in turn 

is equal to vk
t/Pt, which in turn is proportional to vk

t.  Thus weighting by the values vk
t 

seems to be the most appropriate form of weighting. 
 
We will draw on the material in this section in section 4 below.  However, in the 
following section, we provide an introduction to the theory of weighted adjacent period 
hedonic regressions by considering the unweighted case first.    
 
3. Unweighted  Bilateral Hedonic Regressions with Time as a Dummy Variable 
 
We now consider the following hedonic regression model, which utilizes the data of 
periods s and t: 
 
(9)   f(pk

s) = β0 + ∑n=1
N fn(zkn

s)βn + εk
s ;                                                             k∈S(s); 

(10) f(pk
t) = γst + β0 + ∑n=1

N fn(zkn
t)βn + εk

t ;                                                      k∈S(t); 
 
where the variables in (9) and (10) are defined in the same manner as in equation (1) 
above.  In particular, εk

s and εk
t  are independently distributed error terms with mean 0 

and variance σ2. Note that the β regression coefficients in (9) are constrained to be the 
same as the corresponding β coefficients in (10).  Note also that equations (10) have 
added a time dummy variable, γst, and this coefficient will summarize the overall price 
change in the various models going from period s to t.12 
                                                 
12 This two period time dummy variable hedonic regression (and its extension to many periods) was first 
considered explicitly by Court (1939; 109-111) as his hedonic suggestion number two.  Court (1939; 110) 
chose to transform the prices by the log transformation on empirical grounds: “Prices were included in the 
form of their logarithms, since preliminary analysis indicated that this gave more nearly linear and higher 
simple correlations.”  Court (1939; 111) then used adjacent period time dummy hedonic regressions as 
links in a longer chain of comparisons extending from 1920 to 1939 for US automobiles: “The net 
regressions on time shown above are in effect price link relatives for cars of constant specifications.  By 
joining these together, a continuous index is secured.” If the two periods being compared are consecutive 
periods, Griliches (1971b; 7) coined the term “adjacent year regression” to describe this dummy variable 
hedonic regression model.  
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Before proceeding further, we briefly discuss some of the advantages and disadvantages 
of the dummy variable model defined by (9) and (10) versus running separate single 
period regressions of the type defined by (1) for periods s and t and then using these 
separate regressions to form two separate estimates of quality adjusted prices which 
would be averaged in some way in order to form an overall measure of price change 
between periods s and t.  The main advantage of the latter method is that it is more 
flexible; i.e., changes in tastes between periods can readily be accommodated.  However, 
this method has the disadvantage that two distinct estimates of period s to t price change 
will be generated by the method (one using the regression for period s and the other using 
the regression for period s) and it is somewhat arbitrary how these two estimates are to be 
averaged to form a single estimate of price change.13   The main advantages of the 
dummy variable method are that it conserves degrees of freedom and is less subject to 
multicollinearity problems14 and there is no ambiguity about the measure of overall price 
change between periods s and t.15  
 
We have considered only the case of two periods since this is the case of most interest to 
statistical agencies who must provide measures of price change between two periods.  
However, the bilateral model defined by (9) and (10) can encompass both the fixed base 
situation (where s will equal the base period 0) or the chained situation where s will equal 
t−1.  It is also of interest to consider the two period case because in this situation, we can 
draw on many of the ideas that have been introduced into bilateral index number theory, 
which also deals with the problem of measuring price change between two periods. 
 
We first consider the case where f is the identity transformation.16  Let us estimate the 
unknown parameters in (9) and (10) by least squares regression and denote the estimates 
for the βn by bn for n = 0,1,....,N and the estimate for γst by cst.  Denote the least squares 
residuals for equations (9) and (10) with f defined to be the identity transformation by ek

s 
and ek

t respectively.  Then we have the following equations, which relate the model 
prices in the two periods to their predicted values and the sample residuals: 
 
(11) pk

s = b0 + ∑n=1
N fn(zkn

s)bn + ek
s ;                                                             k∈S(s); 

                                                 
13 For treatments of the issues involved in averaging the results of two period specific hedonic regressions 
to obtain measures of overall price change, see Koskimäki and Vartia (2001) for the unweighted case and 
Silver and Heravi (2002) (2003) (2004) (2005), Diewert (2003b) and Triplett (2004) for the weighted case.  
14 This advantage was noted by Griliches (1971b; 8): “The time dummy approach does have the advantage, 
if the comparability problem can be solved, of allowing us to ignore the ever present problem of 
multicollinearity among the various dimensions.” 
15 Griliches (1971b; 7) has the following very nice summary justification for the use of the time dummy 
variable method: “The justification for this [method] is very simple and appealing: we allow as best we can 
for all of the major differences in specifications by ‘holding them constant’ through regression techniques.  
That part of the average price change which is not accounted for by any of the included specifications will 
be reflected in the coefficient of the time dummy and represents our best estimate of the ‘unexplained-by-
specification-change average price change.”  
16 This model is not without interest.  Suppose there is a minimal base period model but various additional 
amounts of useful characteristics can be purchased at constant prices in each period.  Then it would be 
natural to set the fn to be equal to identity functions as well as f and within each period, the linear functional 
form for the hedonic regression would be quite appropriate. 
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(12) pk
t = cst + b0 + ∑n=1

N fn(zkn
t)bn + ek

t ;                                                      k∈S(t). 
 
Now consider a hypothetical situation where the models sold during periods s and t are 
exactly the same so that there are say K common models pertaining to the two periods.  
Suppose further that the model prices in period t are all exactly λ times greater than the 
corresponding model prices in period s, where λ is a positive constant.  Under these 
conditions, it seems reasonable to ask that the regression predicted values for the period t 
models be exactly equal to λ times the regression predicted values for the same models in 
period s; i.e., we want the following equations to be satisfied:17 
 
(13) cst + b0 + ∑n=1

N fn(zkn)bn = λ[ b0 + ∑n=1
N fn(zkn)bn] ;                            k = 1,...,K. 

 
In general, if K > N+2 and λ ≠ 1, it can be seen that equations (13) cannot be solved for 
any coefficients cst, b0, b1,...,bN.  Hence, our conclusion is that the linear time dummy 
hedonic regression model defined by (11) and (12) is not a very good one, since it will 
not give us the “right” answer in a simple situation where all model prices are 
proportional for the two periods.18  Of course, this homogeneity problem with the linear 
dummy variable regression model can be solved if we replace equations (12) by the 
following equations: 
 
(14) pk

t = cst[b0 + ∑n=1
N fn(zkn

t)bn] + ek
t ;                                                      k∈S(t). 

  
In equations (14), the time dummy variable, cst, now appears in a multiplicative fashion.  
Thus, the problem with the estimating equations (11) and (14) is that we no longer have a 
linear regression model; nonlinear estimation techniques would have to be used. 
 
This is our first example of how the test approach that is commonly used in bilateral 
index number theory can be adapted to the adjacent period or time dummy hedonic 
regression context in order to obtain useful restrictions on the form of the hedonic 
regression.  Many additional examples will be presented in what follows.19   
 
Since nonlinear regression models are more difficult to estimate and may suffer from 
reproducibility problems, we will turn our attention to the second set of bilateral hedonic 
regression models, where f is the log transformation.  In this case, the counterparts to 
equations (11) and (12) are the following equations: 
 
(15) ln pk

s = b0 + ∑n=1
N fn(zkn

s)bn + ek
s ;                                                             k∈S(s); 

(16) ln pk
t = cst + b0 + ∑n=1

N fn(zkn
t)bn + ek

t ;                                                      k∈S(t). 
 

                                                 
17 Let zkn ≡ zkn

s = zk
t denote the common amount of characteristic n that the identical model k has in each 

period. 
18 Diewert (2003a) also argued on theoretical grounds that dummy variable hedonic regression models that 
used untransformed prices as dependent variables did not have good properties. 
19 The test approach to bilateral index number theory is reviewed in Diewert (1992), Balk (1995) and the 
ILO (2004; 292-299). 
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Exponentiating both sides of (15) and (16) leads to the following equations that will be 
satisfied by the data and the least squares estimators for (15) and (16): 
 
(17) pk

s = exp[b0 + ∑n=1
N fn(zkn

s)bn]exp[ek
s]                                                       k∈S(s); 

(18) pk
t = exp[cst]exp[b0 + ∑n=1

N fn(zkn
t)bn]exp[ek

t] ;                                          k∈S(t). 
 
Again consider a hypothetical situation where the models sold during periods s and t are 
exactly the same so that there are K common models pertaining to the two periods.  
Again suppose that the model prices in period t are all exactly λ times greater than the 
corresponding model prices in period s, where λ is a positive constant.  Again we ask that 
the regression predicted values for the period t models be exactly equal to λ times the 
regression predicted values for the same models in period s; i.e., we want the following 
equations to be satisfied: 
 
(19) exp[cst]exp[b0 + ∑n=1

N fn(zkn)bn] = λ{exp[b0 + ∑n=1
N fn(zkn)bn]} ;            k = 1,...,K. 

 
It can be seen that if we choose cst

 = ln λ, then we can satisfy equations (19).  Hence we 
conclude (from a test approach perspective) that if we want to use linear regression 
techniques to estimate the parameters of the hedonic regression, then it is preferable to 
run linear bilateral dummy variable hedonic regressions using the log transformation for 
the dependent variable rather than leaving the model prices untransformed.20   
 
The bilateral log hedonic regression model is defined by (9) and (10) where f is the log 
transformation.  It can be seen that in this case, the theoretical index of price change 
going from period s to t is exp[γst] and a sample estimator of this population measure is: 
 
(20) P(s,t) ≡ exp[cst] 
 
where cst is the least squares estimator for the shift parameter γst.  Note that we put the 
shift parameter in equations (10) rather than in equations (9).  The choice of base period 
should not matter so let us consider the following bilateral log regression model which 
puts the shift parameter γts in the period s equations rather than in the period t equations: 
 
(21) ln pk

s = γts + β0
* + ∑n=1

N fn(zkn
s)βn

* + εk
s ;                                                  k∈S(s); 

(22) ln pk
t =  β0

* + ∑n=1
N fn(zkn

t)βn
* + εk

t ;                                                          k∈S(t). 
 
Denote the least squares estimates for βn

* by bn
* for n = 0,1,....,N and the estimate for γts 

by cts.  For the regression model defined by (21) and (22), it can be seen that the 
theoretical index of price change going from period t to s is exp[γts] and the sample 
estimator of this population measure is: 
 
(23) P(t,s) ≡ exp[cts]. 
                                                 
20 However, recall our earlier qualification which noted that if additional amounts of all characteristics can 
be purchased at constant prices in each period, then a nonlinear regression model with the f and fn set equal 
to identity functions is preferable. 
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The question now is: how does P(s,t) defined by (20) relate to P(t,s) defined by (23)?  
Ideally, we would like these two estimators of price change to satisfy the following time 
reversal test: 
 
(24) P(t,s) =1/P(s,t). 
 
If we compare the original log linear regression model defined by (9) and (10) (with f 
being the log transformation) with the new model defined by (21) and (22), it can be seen 
that the right hand side exogenous variables are identical except that γts appears in the 
first set of equations in (21) and (22) while γst appears in the second set of equations in 
(9) and (10).  The transpose of the column in the X matrix that corresponds to γts in (21) 
and (22) is equal to [11

T,02
T] where 11 is a column vector of ones of dimension equal to 

the number of models in the set S(s) and 02 is a column vector of zeros of dimension 
equal to the number of models in the set S(t).  The transpose of the column in the X 
matrix that corresponds to γst in (9) and (10) is equal to [01

T,12
T] where 01 is a column 

vector of zeros of dimension equal to the number of models in the set S(s) and 12 is a 
column vector of ones of dimension equal to the number of models in the set S(t).  
However, note that both models have the constant term β0 (or β0

*) in every equation and 
the transpose of the column in the X matrix that corresponds to this constant term is equal 
to [11

T,12
T] in both models.  It can be seen that the subspace spanned by the X columns 

corresponding to β0 and γst in (9) and (10)  is equal to the subspace spanned by the X 
columns corresponding to β0

* and γts in (21) and (22) and the two sets of parameters are 
related by the following equations:    
 
(25) [01

T,12
T] γst + [11

T,12
T] β0 = [11

T,02
T] γts + [11

T,12
T] β0

*. 
 
Equations (25) are equivalent to the following 2 equations in the four variables γst, β0, γts 
and β0

*: 
 
(26) 0 γst + 1 β0 = 1 γts + 1 β0

* ; 
        1 γst + 1 β0 = 0 γts + 1 β0

*. 
 
Thus given γst and β0, the corresponding γts and β0

* can be obtained using equations (26) 
as: 
 
(27) γts = −γst ;  β0

* = γst + β0. 
 
Equations (27) also hold for the least squares estimators for the two hedonic regression 
models. In particular, we have: 
 
(28) cts = −cst. 
 
Hence, exponentiating both sides of (28) gives us exp[cts] = 1/exp[cts] and this equation is 
equivalent to (45) using definitions (20) and (23).  Thus we have shown that the estimator 
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of price change P(s,t) defined by (20) (which corresponds to the least squares estimators 
of the initial log hedonic regression model defined by (9) and (10) with f(p) ≡ ln p) is 
equal to the reciprocal of the estimator of price change P(t,s) defined by (23) (which 
corresponds to the second log hedonic regression model defined by (21) and (22) so that 
the two bilateral dummy variable hedonic regressions satisfy the time reversal test (24). 
 
If it is desired to avoid the use of nonlinear regression techniques, then the results in this 
section support the use of the logarithms of model prices as the dependent variables in an 
unweighted bilateral hedonic regression model with a time dummy variable.   
 
In the following section, we will study the properties of weighted bilateral hedonic 
regression models. 
 
4. Weighted  Bilateral Hedonic Regressions with Time as a Dummy Variable 
 
Given the results in the previous section, we consider only weighted bilateral hedonic 
regressions that use the log of model prices as the dependent variable, before weighting 
the equations.  We also draw on the results in section 2 and consider only value 
weighting.  Thus we now consider the following value weighted hedonic regression 
model, which utilizes the data of periods s and t: 
 
(29) (vk

s)1/2 ln pk
s = (vk

s)1/2[β0 + ∑n=1
N fn(zkn

s)βn] + εk
s ;                         k∈S(s); 

(30) (vk
t)1/2 ln pk

t = (vk
t)1/2[γst + β0 + ∑n=1

N fn(zkn
t)βn] + εk

t ;                   k∈S(t); 
 
where the model sales values for period t, vk

t, were defined by (6) and εk
s and εk

t  are 
independently distributed error terms with mean 0 and variance σ2.   
 
The weighted model defined by (29) and (30) is the bilateral counterpart to our single 
equation weighted hedonic regression model that was studied in section 2 above.  
However, in the present bilateral context, we now encounter a problem that was absent in 
the single equation context.  The problem is this: if there is high inflation going from 
period s to t, then the period t model sales values vk

t can be very much bigger than the 
corresponding period s model sales values vk

s due to this general inflation.  Hence, the 
assumption of homoskedastic residuals between equations (29) and (30) is unlikely to be 
satisfied.21  Hence, it is necessary to pick new weights that will eliminate this problem. 
 
In order to address the above problem, we first define the period t expenditure share of 
model k as follows: 
 
(31) sk

t ≡ pk
tqk

t / ∑i∈S(t) pi
tqi

t ;                                                                  k∈S(t).  
   
Our initial solution to the above problem caused by general inflation between the two 
periods is to use the model expenditure shares, sk

s and sk
t as the weights in (29) and (30) 

                                                 
21 From the viewpoint of the descriptive statistics approach, if we want the weights for each period to be 
equally important or representative in the regression, then it is natural to require that the weights to sum to 
one for each period. 
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in place of the model expenditures, vk
s and vk

t.  Thus we recommend the use of the 
following expenditure share weighted hedonic regression model, which utilizes the data 
of periods s and t:22 
 
(32) (sk

s)1/2 ln pk
s = (sk

s)1/2[β0 + ∑n=1
N fn(zkn

s)βn] + εk
s ;                         k∈S(s); 

(33) (sk
t)1/2 ln pk

t = (sk
t)1/2[γst + β0 + ∑n=1

N fn(zkn
t)βn] + εk

t ;                   k∈S(t); 
 
where εk

s and εk
t  are independently distributed error terms with mean 0 and variance σ2. 

 
Denote the least squares estimates for βn by bn for n = 0,1,....,N and the estimate for γst by 
cst.  For the regression model defined by (32) and (33), it can be seen that the theoretical 
index of price change going from period t to s is exp[γst] and the sample estimator of this 
population measure is: 
 
(34) P1(s,t) ≡ exp[cst]. 
 
It can be shown that P1(s,t) defined by (34) in this section has the same desirable property 
that P(s,t) defined by (20) in the previous section had: namely, if the models are identical 
in the two periods (and the model expenditure shares are identical for the two periods) 
and the model prices in period t are all exactly λ times greater than the corresponding 
model prices in period s, then P1(s,t) is exactly equal to λ.23 
 
The restriction that the expenditure shares be identical in the two periods in the identical 
model case is a bit unrealistic.  Moreover, in the identical models case, it would be nice if 
P1(s,t) defined by (34) turned out to equal the Törnqvist price index, since this index is a 
preferred one from the viewpoints of both the stochastic and economic approaches to 
index number theory.24  Hence in place of the model defined by (32) and (33), when a 
model is present in both periods, let us use the average sales share for that model, 
(1/2)(sk

s+sk
t), as the weight for that model in both periods.  In this revised weighting 

scheme, the old period s equations (32) are replaced by the following two sets of 
equations:  
 
(35) (sk

s)1/2 ln pk
s = (sk

s)1/2[β0 + ∑n=1
N fn(zkn

s)βn] + εk
s ;                                  k∈[S(s)∼S(t)]; 

(36) [(1/2)(sk
s+sk

t)]1/2 ln pk
s = [(1/2)(sk

s+sk
t)]1/2 [β0 + ∑n=1

N fn(zkn
s)βn] + εk

s ; k∈S(s)∩S(t). 
 
Thus if a model k is present in period s but not present in period t, then we use the square 
root of the period s sales share for that model, (sk

s)1/2, as the weight, which means this 
model is included in equations (35).  On the other hand, if model k is present in both 
periods, , then we use the square root of the arithmetic average of the period s and t sales 
shares for that model, [(1/2)(sk

s+sk
t)]1/2, as the weight, which means this model is 

                                                 
22 Diewert (2005) considered a model similar to (32) and (33) except that all of the explanatory variables 
were dummy variables and he showed that weighting by the square roots of expenditure shares led to a very 
reasonable index number formula to measure the price change between the two periods.    
23 See Proposition 1 in the Appendix. 
24 See Diewert (2002; 578-584) and the ILO (2004; 301-304 and 322-324). 
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included in equations (36).  Similarly, the old period s equations (33) are replaced by the 
following two sets of equations:25  
 
(37) (sk

t)1/2 ln pk
t = (sk

t)1/2[γst + β0 + ∑n=1
N fn(zkn

t)βn] + εk
t ;                           k∈[S(t)∼S(s)]; 

(38) [(1/2)(sk
s+sk

t)]1/2 ln pk
t = [(1/2)(sk

s+sk
t)]1/2 [γst + β0 + ∑n=1

N fn(zkn
t)βn] + εk

t ; 
                                                                                                                          k∈S(s)∩S(t). 
 
Thus if a model k is present in period t but not present in period s, then we use the square 
root of the period t sales share for that model, (sk

t)1/2, as the weight, which means this 
model is included in equations (37).  On the other hand, if model k is present in both 
periods, then we use the square root of the arithmetic average of the period s and t sales 
shares for that model, [(1/2)(sk

s+sk
t)]1/2, as the weight, which means this model is 

included in equations (38).  As usual, we assume that εk
s and εk

t are independently 
distributed error terms with mean 0 and variance σ2.   
 
Denote the least squares estimates for βn by bn for n = 0,1,....,N and the estimate for γst by 
cst.  For the regression model defined by (35)-(38), it can be seen that the theoretical 
index of price change going from period t to s is exp[γst] and the sample estimator of this 
population measure is: 
 
(39) P2(s,t) ≡ exp[cst]. 
 
It can be shown that P2(s,t) defined by (39) has the following desirable property: if the 
models are identical in the two periods, then P2(s,t) is equal to the Törnqvist price index 
between the two periods.26  Hence it appears that the weighted hedonic regression model 
defined by (35)-(38) is a “natural” weighted hedonic regression model that provides a 
generalization of the Törnqvist price index to cover the case where the models are not 
matched.  If there are no models in common for the two periods under consideration, then 
the model defined by (35)-(38) becomes a special case of our earlier model defined by 
(32)-(33). 
 
As in the previous section, it is somewhat arbitrary whether we put the time dummy 
variable in the period t equations or whether we put it in the period s equations.  If we put 
the time dummy in the period s equations as the parameter γts and obtain a weighted least 
squares estimate cts for this population parameter, the theoretical index of price change 
going from period t to s is exp[γts] and the sample estimator of this population measure is: 
 
(40) P*(t,s) ≡ exp[cts]. 
 
As in the previous section, we would like P*(t,s) to equal the reciprocal of P(s,t).  It turns 
out that this property is true for the weighted hedonic regressions defined by (32) and 

                                                 
25 Note that the “mixed” period s share weights used in (35) and (36) and the “mixed” period t share 
weights used in (37) and (38) do not necessarily sum to one whereas the period s and t weights used in (32) 
and (33) respectively did sum to one for each period.  
26 This follows from Corollary 5.3 in the Appendix. 
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(33) and (35)-(38) in this section as well as for the unweighted ones defined in the 
previous section; see Proposition 4 in the Appendix.  Hence it does not matter whether 
we put the time dummy variable in period s or t: our measure of overall price change 
between the two periods will be invariant to this choice for the two weighted hedonic 
regressions considered in this section. 
 
Using the results in the Appendix, we can also show that P1(s,t) and P2(s,t) both satisfy 
the identity test (A6), the homogeneity tests (A4) and (A5) and the time reversal test (A7) 
as we have already indicated.  Thus both of these hedonic price indexes have some good 
axiomatic properties. 
 
Which bilateral weighted hedonic index is “best”?  From the viewpoint of 
representativity, P1(s,t) seems best: the models present in each period are weighted by 
expenditure shares that pertain to that period.  However, the loss of representativity for 
P2(s,t) is probably not large in most applications and P2(s,t) has the advantage of being 
consistent with the use of a Törnqvist price index in the matched models case.  Thus 
either index can be justified. 
 
5. The Pure Dummy Variable Adjacent Period Hedonic Regression Model 
 
In this section, we specialize the results in the previous section in order to provide a 
generalization (to the weighted case) of a model due to Aizcorbe, Corrado and Doms 
(2000), which introduced a dummy variable for each model in addition to the usual time 
dummies.  Thus their model had no other characteristics other than these model specific 
dummy variables.27  We can use the results in the previous section to see how the 
weighted ACD model works in the case of two periods. 
 
We will work with the first share weighted model defined by (32) and (33) in the 
previous section, except that the N characteristics functions fn are now assumed to be 
dummy variables.28  Thus we assume that there are a total of N different models sold in 
periods s and t.  The old period s equations (32) are broken up into two sets of equations, 
(41) and (42), where the models k which appear in (41) are present in both periods s and t 
and the models m which appear in (42) are present in period s and not period t: 
 
(41) (sk

s)1/2 ln pk
s = (sk

s)1/2βk + εk
s ;                                          k∈S(s)∩S(t); 

(42) (sm
s)1/2 ln pm

s = (sm
s)1/2βm + εm

s ;                                      m∈[S(s)∼S(t)]. 
 
Similarly, the old period t equations (33) are broken up into two sets of equations, (43) 
and (44), where the models k which appear in (43) are present in both periods s and t and 
the models n which appear in (44) are present in period t and not period s: 
 

                                                 
27 Their model is equivalent to the Country Product Dummy model used in making international 
comparisons of prices that was pioneered by Summers (1973).  For extensions of this model to the 
weighted case, see Diewert (2004) (2005).  
28 We also need to set β0, the constant term in the regression, equal to zero in order to identify all of the 
parameters in this pure dummy variable hedonic regression. 
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(43) (sk
t)1/2 ln pk

t = (sk
t)1/2[γst + βk] + εk

t ;                                           k∈S(s)∩S(t); 
(44) (sn

t)1/2 ln pn
t = (sn

t)1/2[γst + βn] + εn
t ;                                           n∈[S(t)∼S(s)]. 

 
Now run a least squares regression on the model defined by (41)-(44).  Denote the least 
squares estimates for βn by bn for n = 1,....,N and the estimate for γst by cst.  Use the first 
order necessary (and sufficient) conditions for the least squares minimization problem for 
the bn to solve for each bn in terms of cst and then substitute these expressions for the bn 
into the first order condition for the cst parameter.  The resulting equation simplifies to: 
 
(45) cst = W−1 ∑k∈S(s)∩S(t) [sk

s + sk
t]−1 sk

s
 sk

t ln[pk
t
 /pk

s] 
   
where  
 
(46) W ≡ ∑k∈S(s)∩S(t) [sk

s + sk
t]−1 sk

s
 sk

t. 
 
Thus cst, the log of the hedonic price index going from period s to t, is equal to a 
weighted average (where the weights are positive and sum to one) of the log price ratios, 
ln[pk

t
 /pk

s], over all of the models k that are present in both periods.  Note that this pure 
dummy variable hedonic model boils down to a (weighted) matched model price index. 
 
If we drop the share weights in (41)-(44) and simply run an unweighted regression 
model, then we can use the above algebra by simply setting each “share” equal to 1 and 
we find that 
 
(47) cst = (1/M) ln[pk

t
 /pk

s] 
 
where M is the number of models that are present in both periods s and t.  This captures 
the original ACD model for the case of only two periods.  Thus for the case of only two 
time periods, the Aizcorbe, Corrado and Doms (2000) model of hedonic price change 
reduces to a statistical agency matched model estimate of price change; i.e., their hedonic 
estimate of the price change going from period s to t is equal to the equally weighted 
geometric mean of the price relatives of the models that are present in both periods.   
 
The exact equivalence of the ACD measure of price change in the two period case to the 
equally weighted geometric mean of the price relatives of the models that are present in 
both periods does not carry over to the case where there are more than 2 periods.  
However, it is likely that even in the many period case, the ACD measures of price 
change will have a tendency to follow the matched model results.  In any case, the ACD 
measures of price change can be quite different from what a hedonic model with 
continuous characteristics would yield.29 
 
6. Conclusion 
 

                                                 
29 See Triplett and McDonald (1977), Triplett (2004) and Silver and Heravi (2002) (2003) (2004) (2005) 
for some empirical evidence and explanation on this point. 
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We conclude this chapter by noting that we have not resolved all of the issues 
surrounding the question as to whether hedonic regressions should be weighted according 
to their economic importance or not.  There is a tension between the index number 
approach to hedonic regressions and the econometric approach.  This tension is best 
described by Triplett (2004), who wrote the most systematic discussion of the weighting 
issue to date.30  It is worth quoting part of Triplett’s conclusion on the weighting issue: 
 
“Dickens (1990) contends that when weighted and unweighted regression estimates differ, it is a sign of 
specification error—in our context, an example would be a hedonic function in which crucial 
characteristics variables were missing.  Missing information on software characteristics and some 
characteristics of hardware are common in hedonic investigations so hedonic function sensitivity to 
weighting in the presence of missing variables is consistent with Dickens’ contention.  On Dickens’ 
analysis, in a properly specified hedonic function, weighted and unweighted regressions should not differ.”  
Jack E. Triplett (2004; 193-194). 
 
Thus from the econometrics point of view, the emphasis is on the statistical model: its 
accurate specification and its most efficient estimation.  However, from the viewpoint of 
the price statistician, the model is not the most important consideration: the most 
important consideration is to obtain an overall measure of price change over two periods 
over some domain of definition of admissible prices and transactions involving those 
prices.  Thus the price statistician takes a descriptive statistics perspective whereas the 
econometrician takes a statistical model and estimation perspective.31  The difference 
between the two approaches can be illustrated in the matched model context.  In this 
context, the econometrician running a hedonic regression model in this context would 
probably follow Dickens advice and focus on a simple unweighted model of the type 
defined by (9) and (10) in section 3 and would end up with the equally weighted 
geometric mean of the price relatives of the matched models (the Jevons index) as the 
measure of overall price change between the two periods.  However, the descriptive 
statistics price statistician might run the weighted model defined by (35)-(38) in section 4 
and would end up with the Törnqvist price index as the measure of overall price change.32  
In many cases, the two estimates of overall price change could be quite different but from 
the viewpoint of standard index number theory, the Törnqvist index is clearly preferable 
to the Jevons index. 
 
The theory of hedonic regressions leaves a great deal of leeway open to the empirical 
investigator with respect to the details of implementation of the models.  Our strategy in 
this chapter has been to use some of the ideas that are present in the test approach to 
                                                 
30 Silver and Heravi (2004) also discuss alternative approaches to weighting in hedonic regressions in a 
systematic manner. 
31 Triplett (2004; 190) notes that the econometric approach can be used in a weighted context so the two 
perspectives can be complementary: “However, the dummy variable method is only one method for 
estimating hedonic price indexes and it is the only one where weights for the index and weights for the 
hedonic function imply the same questions.  Chapter 3 describes three other methods for estimating 
hedonic price indexes—the characteristics price index method, the hedonic imputation method and the 
hedonic quality adjustment method—in all of which a weighted index number can be produced using an 
unweighted hedonic function.” 
32 See Diewert (2004; section 8) for a method for converting weighted models like (32)-(33) or (35)-(38) 
into descriptive statistics models similar to Theil’s (1967; 138) so that cst

* can be interpreted as a 
descriptive statistics measure of overall log pure price change between the two periods.     
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index number theory in an attempt to work out some of the axiomatic properties of 
adjacent period time dummy hedonic regression models in an attempt to cast some light 
on the issue of weighting.  Our results are not definitive but perhaps they can cast some 
light on the consequences of different types of weighting.33   
 
We conclude by noting that the cautious attitude towards the use of hedonic regressions 
expressed by Schultze and Mackie (2002) echoes the following comments made by Bean 
in his discussion of Court’s (1939) pioneering paper on hedonic regressions:  
 
“Mr. Court’s interesting work should be carried much further, as he suggests.  We should, however, not be 
disappointed if neither public agencies nor trade associations adopt the policy of publishing prices, values 
and index numbers based on the relatively tricky results that one is sure to get by applying the device of 
multiple correlation.  The only group who would sponsor such a procedure would be the non-existent 
National Association of Experts in Multiple Correlation, the demand for whose services would be 
enormously increased.”  Louis H. Bean (1939; 119). 
 
Hopefully, in the next few years, as users form a consensus on what the “best” 
procedures are, then the use of hedonic regressions by statistical agencies will become 
much more widespread and routine.34   
 
Appendix: Properties of Bilateral Weighted Hedonic Regressions 
 
We consider some of the mathematical properties of a slight generalization of the share 
weighted bilateral hedonic regression model defined by (32) and (33) in section 4.  The 
generalization is that we do not restrict the weights to sum up to 1 in each period.  Thus, 
we replace the period s share weights sk

s in (32) and the period t share weights sk
t in (33) 

by the positive weights wk
s and wk

t respectively, where these weights do not necessarily 
sum to 1 in each period.  We assume that these weight functions are known functions of 
the price and quantity data pertaining to periods s and t; i.e., we have for some functions, 
gk

s and gk
t: 

 
(A1) wk

s = gk
s(ps,pt,qs,qt) for k∈S(s) ;  wk

t = gk
t(ps,pt,qs,qt) for k∈S(t) 

 
where ps and pt are price vectors of the model prices for periods s and t respectively and 
qs and qt are the corresponding period s and t quantity vectors of the models sold in 
periods s and t.  In the Propositions below, we will place further restrictions on the 
weighting functions gk

s and gk
t as they are needed. 

 
The weighted least squares estimators for γst, β0, β1,...,βN for this new model are the 
solutions cst

*, b0
*, b1

*,..., bN
* to the following quadratic weighted least squares 

minimization problem:35 

                                                 
33 It is encouraging to the author that the earlier version of this paper, Diewert (2003b), has been 
extensively used by Silver and Heravi (2004) (2005) and Haan (2003) and the work of these authors has 
influenced statistical agency practice in the UK and the Netherlands. 
34 The extensive work by Jack Triplett (2004) and Silver and Heravi (2001) (2002) (2003) (2004) (2005) 
should help form this consensus. 
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(A2) min b’s and c {∑k∈S(s) wk

s[ln pk
s − b0 − ∑n=1

N fn(zkn
s)bn]2  

                                       + ∑k∈S(t) wk
t[ln pk

t − cst − b0 − ∑n=1
N fn(zkn

t)bn]2}. 
 
The bilateral price index P that summarizes the overall change in prices going from 
period s to t is defined as the exponential of the cst solution to (A2); i.e., we have:  
 
(A3) P(ps,pt,qs,qt) ≡ exp[cst

*]. 
 
We would like to show that the hedonic index number formula defined by (A3) has some 
of the properties that bilateral index number formulae defined over matched models 
usually have.  Thus we are attempting to extend the test approach to index number 
theory36 to weighted bilateral hedonic regressions.  In particular, we would like to 
establish the following properties for P: 
 
(A4) Homogeneity of degree one in period t prices; i.e., P(ps,λpt,qs,qt) = λP(ps,pt,qs,qt) for 
all λ > 0. 
 
(A5) Homogeneity of degree minus one in period s prices; i.e., P(λps,pt,qs,qt) = 
λ−1P(ps,pt,qs,qt) for all λ > 0. 
 
(A6) Identity; i.e., if the models in the two periods are identical and the selling prices are 
equal so that ps = pt ≡ p and, in addition, the same quantities of each model are sold in the 
two periods so that qs = qt ≡ q, then the resulting price index P(p,p,q,q) = 1. 
   
(A7) Time reversal; i.e., P*(pt,ps,qt,qs) = 1/ P(ps,pt,qs,qt). 
 
The above property says that if we interchange the order of our data and measure the 
overall change in prices going backwards from period t to s, then the resulting index 
P*(pt,ps,qt,qs) is equal to the reciprocal of the original index P(ps,pt,qs,qt), which measured 
the degree of overall price change going from period s to t.  In order to formally define 
the price index P*, let cts

*, b0
**, b1

**,..., bN
** be the solution to the following quadratic 

weighted least squares minimization problem, which corresponds to reversing the 
ordering of the two periods: 
 
(A8) min b’s and c {∑k∈S(s) wk

s[ln pk
s − cts − b0 − ∑n=1

N fn(zkn
s)bn]2  

                                       + ∑k∈S(t) wk
t[ln pk

t − b0 − ∑n=1
N fn(zkn

t)bn]2}. 
 
The bilateral price index P* that summarizes the overall change in prices going from 
period s to t is defined as the exponential of the cts solution to (A8); i.e., we have:  
 
                                                                                                                                                 
35 Throughout this Appendix, we assume that the X matrix that corresponds to the linear regression model 
defined by (A2) has full column rank so that the solution to (A2) exists and is unique. 
36 The test approach to index number theory was largely developed by Walsh (1901) (1921), Fisher (1911) 
(1922) and Eichhorn and Voeller (1976). For more recent contributions, see Diewert (1992) (1993), Balk 
(1995) von Auer (2001) and the ILO (2004; 292-306).  



 20

(A9) P*(pt,ps,qt,qs) ≡ exp[cts
*]. 

 
In the remainder of this Appendix, we shall find conditions which ensure that the tests 
(A4)-(A7) are satisfied. 
 
Proposition 1: Suppose that: (i) all models are identical in the two periods so that S(s) = 
S(t) and zkn

s = zkn
t ≡ zkn for n = 1,...,N and k = 1,...,K; (ii) the model prices in period s are 

equal to the corresponding model prices in period t so that pk
s = pk

t ≡ pk for k = 1,...,K; 
(iii) the model quantities sold in period s are equal to the corresponding sales in period t 
so that qk

s = qk
t ≡ qk for k = 1,...,K;  (iv) the model weights are equal across the two 

periods for each model so that wk
s = wk

t ≡ wk for k = 1,...,K.  Under these hypotheses, the 
identity test (A6) is satisfied. 
 
Proof: Under the above hypotheses, the least squares minimization problem (A2) 
becomes: 
 
(A10) min b’s and c {∑k∈S(s) wk[ln pk − b0 − ∑n=1

N fn(zkn)bn]2  
                                       + ∑k∈S(t) wk[ln pk − cst − b0 − ∑n=1

N fn(zkn)bn]2}. 
 
From the general properties of minimization problems, it can be seen that the following 
inequality is valid: 
 
(A11) min b’s and c {∑k∈S(s) wk[ln pk − b0 − ∑n=1

N fn(zkn)bn]2  
                                       + ∑k∈S(t) wk[ln pk − cst − b0 − ∑n=1

N fn(zkn)bn]2} 
≥ min b’s {∑k∈S(s) wk[ln pk − b0 − ∑n=1

N fn(zkn)bn]2} 
                                       + min b’s and c ∑k∈S(t) wk[ln pk − cst − b0 − ∑n=1

N fn(zkn)bn]2}. 
 
Let b0

*, b1
*,..., bN

* solve the first minimization problem on the right hand side of (A11).  
Now look at the second minimization problem on the right hand side of (A11).  
Obviously the parameters cst and b0 cannot be separately identified so one of them can be 
set equal to zero; we choose to set cst = 0.  But after setting cst = 0, we see that the second 
minimization problem is identical to the first minimization problem on the right hand side 
of (A11), and hence cst

* = 0 and b0
*, b1

*,..., bN
* solve the second minimization problem.  

However, cst
* = 0 and b0

*, b1
*,..., bN

* are feasible for the minimization problem on the left 
hand side of (A11) and since the objective function evaluated at this feasible solution 
attains a lower bound, we conclude that cst

* = 0 and b0
*, b1

*,..., bN
* solves (A10).  But cst

* 
= 0 implies P(p,p,q,q) ≡ exp[cst

*] = exp[0] = 1, which is the desired result (A6).      Q.E.D. 
 
Proposition 2: Suppose that the weight functions defined by (A1) are homogeneous of 
degree zero in the components of the period t price vector pt, so that for all λ > 0, 
gk

s(ps,λpt,qs,qt) = gk
s(ps,pt,qs,qt) for k∈S(s) and gk

t(ps,λpt,qs,qt) = gk
t(ps,pt,qs,qt) for k∈S(t).  

Then the hedonic price index P(ps,pt,qs,qt) defined by (A3) will satisfy the homogeneity 
of degree one property (A4).37 
                                                 
37 In keeping with the test approach in bilateral index number theory, we assume that the period t quantity 
vector qt remains the same if the period t prices change from pt to λpt. 
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Proof: Let cst

*, b0
*, b1

*,..., bN
* solve the initial minimization problem (A2) before we 

multiply the period t price vector by λ > 0.  Now consider a new weighted least squares 
minimization problem where pt has been replaced by λpt.  Under our hypotheses, the 
weights will not be changed by this change in the period t prices and so the new 
minimization problem will be:  
 
(A12)  min b’s and c {∑k∈S(s) wk

s[ln pk
s − b0 − ∑n=1

N fn(zkn
s)bn]2  

                                       + ∑k∈S(t) wk
t[ln pk

t + ln λ − cst − b0 − ∑n=1
N fn(zkn

t)bn]2}. 
       
(A13)   = min b’s and c {∑k∈S(s) wk

s[ln pk
s − b0 − ∑n=1

N fn(zkn
s)bn]2  

                                       + ∑k∈S(t) wk
t[ln pk

t − cst′ − b0 − ∑n=1
N fn(zkn

t)bn]2} 
 
where the new cst variable is defined as follows: 
 
(A14) cst′ ≡ cst − ln λ. 
   
Denote the solution to (A13) as cst

**′, b0
**, b1

**,..., bN
**.  However, it can be seen that the 

solution to (A13) is exactly the same as the solution to the initial problem, (A2).  Hence 
cst

**′ = cst
*, and the cst solution to (A12), which we denote by cst

**, satisfies (A14): 
 
(A15)  cst

* = cst
**′ =  cst

** − ln λ  or 
(A16) cst

** = cst
* + ln λ. 

 
Hence 
 
(A17) P(ps,λpt,qs,qt) ≡ exp[cst

**] 
                                 = exp[cst

* + ln λ]                                    using (A16) 
                                 = λ exp[cst

*] 
                                 = λ P(ps,pt,qs,qt)                                     using definition (A3) 
 
which establishes the desired result (A4).  Q.E.D. 
 
Proposition 3: Suppose that the weight functions defined by (A1) are homogeneous of 
degree zero in the components of the period s price vector ps, so that for all λ > 0, 
gk

s(λps,pt,qs,qt) = gk
s(ps,pt,qs,qt) for k∈S(s) and gk

t(λps,pt,qs,qt) = gk
t(ps,pt,qs,qt) for k∈S(t).  

Then the hedonic price index P(ps,pt,qs,qt) defined by (A3) will satisfy the homogeneity 
of degree minus one property (A5).38 
 
Proof: Let cst

*, b0
*, b1

*,..., bN
* solve the initial minimization problem (A2) before we 

multiply the period s price vector by λ > 0.  Now consider a new weighted least squares 
minimization problem where ps has been replaced by λps.  Under our hypotheses, the 

                                                 
38 We assume that the period s quantity vector qs remains the same if the period s prices change from ps to 
λps. 
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weights will not be changed by this change in the period s prices and so the new 
minimization problem will be:  
 
(A18)  min b’s and c {∑k∈S(s) wk

s[ln pk
s + ln λ − b0 − ∑n=1

N fn(zkn
s)bn]2  

                                       + ∑k∈S(t) wk
t[ln pk

t − cst − b0 − ∑n=1
N fn(zkn

t)bn]2}. 
       
(A19)   = min b’s and c {∑k∈S(s) wk

s[ln pk
s − b0′ − ∑n=1

N fn(zkn
s)bn]2  

                                       + ∑k∈S(t) wk
t[ln pk

t − cst′ − b0′ − ∑n=1
N fn(zkn

t)bn]2} 
 
where the new b0 and cst variables are defined as follows: 
 
(A20) b0′ ≡ b0 − ln λ ;  cst′ ≡ cst + ln λ. 
   
Denote the solution to (A19) as cst

**′, b0
**′, b1

**,..., bN
**.  However, it can be seen that the 

solution to (A19) is exactly the same as the solution to the initial problem, (A2).  Hence 
cst

**′ = cst
* and b0

**′ = b0
*.  Thus the cst solution to (A18), which we denote by cst

**, 
satisfies the following equations, where we have substituted into equations (A20): 
 
(A21) b0

* ≡ b0
** − ln λ ;  cst

* ≡ cst
** + ln λ. 

  
Using the second equation in (A21), we have:   
 
(A22) cst

** = cst
* − ln λ. 

 
Hence 
 
(A23) P(λps,pt,qs,qt) ≡ exp[cst

**] 
                                 = exp[cst

* − ln λ]                                       using (A22) 
                                 = λ−1 exp[cst

*] 
                                 = λ−1 P(ps,pt,qs,qt)                                     using definition (A3) 
 
which establishes the desired result (A5).  Q.E.D. 
 
Note that in both Propositions 2 and 3, it is not necessary that the weights wk

s and wk
t 

sum to one for each period s and t. 
 
Proposition 4: The bilateral hedonic price index which measures price change going 
from period s to t, P(ps,pt,qs,qt) defined by (A3), and the bilateral hedonic price index 
which measures price change going from period t to s, P*(pt,ps,qt,qs) defined by (A9), 
satisfy the time reversal test (A7). 
 
Proof: As usual, denote the solution to (A2) as cst

*, b0
*, b1

*,..., bN
*.  The minimization 

problem, which corresponds to reversing the ordering of the two periods, is (A24) below 
and it has the solution cts

*, b0
**, b1

**,..., bN
**:   

 
(A24) min b’s and c {∑k∈S(s) wk

s[ln pk
s − cts − b0 − ∑n=1

N fn(zkn
s)bn]2  



 23

                                       + ∑k∈S(t) wk
t[ln pk

t − b0 − ∑n=1
N fn(zkn

t)bn]2} 
(A25) = min b’s and c {∑k∈S(s) wk

s[ln pk
s − b0′ − ∑n=1

N fn(zkn
s)bn]2  

                                       + ∑k∈S(t) wk
t[ln pk

t − cts′ − b0′ − ∑n=1
N fn(zkn

t)bn]2} 
 
where we have defined the new variables b0′ and cts′ in terms of the old variables b0 and 
cts as follows: 
 
(A26) b0′ ≡ b0 + cts ;  cst′ ≡ − cst . 
   
Denote the solution to (A25) as cts

*′, b0
**′, b1

**′,..., bN
**′.  However, it can be seen that the 

solution to (A25) is exactly the same as the solution to the initial problem, (A2).  Hence 
cts

*′ = cst
* and b0

**′ = b0
*.  Thus the cts solution to (A24), which we denoted by cts

*, 
satisfies the following equations, where we have substituted into equations (A26): 
 
(A27) b0

* ≡ b0
** + cts

* ;  cst
* ≡ − cts

*. 
  
Using definition (A9), we have: 
 
(A28) P*(pt,ps,qt,qs) ≡ exp[cts

*] 
                                = exp[−cst

*]                                              using (A27) 
                                = 1/exp[cst

*]  
                                = 1/P(ps,pt,qs,qt)                                       using definition (A3) 
 
which establishes the desired result (A7).  Q.E.D. 
 
Proposition 5: Let cst

*, b0
*, b1

*,..., bN
* denote the solution to the weighted least squares 

problem (A2).  Then cst
*, which is the logarithm of the bilateral hedonic price index 

P(ps,pt,qs,qt) defined by (A3), satisfies the following equation:39 
 
(A29) [∑k∈S(t) wk

t] cst
* = ∑k∈S(t) wk

t ln pk
t − ∑k∈S(s) wk

s ln pk
s − [∑k∈S(t) wk

t] b0
*  

                  + [∑k∈S(s) wk
s] b0

* − ∑k∈S(t) wk
t ∑n=1

N fn(zkn
t)bn

* + ∑k∈S(s) wk
s ∑n=1

N fn(zkn
s)bn

*   
 = ∑k∈S(t) wk

t [ln pk
t − b0

* − ∑n=1
N fn(zkn

t)bn
*] − ∑k∈S(s) wk

s [ln pk
s − b0

* − ∑n=1
N fn(zkn

t)bn
*]. 

 
Proof: The solution cst

*, b0
*, b1

*,..., bN
* to the minimization problem (A2) can be obtained 

by applying least squares to the following linear regression model: 
 
(A30) (wk

s)1/2 ln pk
s = (wk

s)1/2[b0
* + ∑n=1

N fn(zkn
s)bn

*] + ek
s ;                                   k∈S(s); 

          (wk
t)1/2 ln pk

t = (wk
t)1/2[cst

* + b0
* + ∑n=1

N fn(zkn
t)bn

*] + ek
t ;                            k∈S(t). 

 
We have inserted the optimal least squares estimators, cst

*, b0
*, b1

*,..., bN
*, into equations 

(A30) so that we can use these equations to define the least squares residuals ek
s and ek

t 
for the period s and t observations.  It is well known that the column vector of these 

                                                 
39 The two equations in (A29) are generalizations of a similar formula derived by Triplett and McDonald 
(1977; 150) in the unweighted context.  This unweighted formula was also used by Triplett (2004; 51-52).  
The technique of proof used in this Proposition was used in section 4 of Diewert (2003a).  
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residuals is orthogonal to the columns of the X matrix, which correspond to the 
exogenous variables on the right hand side of equations (A30).  These orthogonality 
relations applied to the columns that correspond to the constant term b0 and the time 
dummy variable cst give us the following 2 equations: 
 
(A31) 0 = ∑k∈S(s) wk

s ln pk
s + ∑k∈S(t) wk

t ln pk
t − [∑k∈S(t) wk

t] cst
* − [∑k∈S(s) wk

s] b0
*  

                    − [∑k∈S(t) wk
t] b0

* − ∑k∈S(s) wk
s ∑n=1

N fn(zkn
s)bn

* − ∑k∈S(t) wk
t ∑n=1

N fn(zkn
t)bn

* ; 
(A32) 0 = ∑k∈S(t) wk

t ln pk
t − ∑k∈S(t) wk

t cst
* − ∑k∈S(t) wk

t b0
* − ∑k∈S(t) wk

t ∑n=1
N fn(zkn

t)bn
*. 

 
Equation (A32) can be rewritten as: 
 
(A33) ∑k∈S(t) wk

t ln pk
t = [∑k∈S(t) wk

t]cst
* + [∑k∈S(t) wk

t]b0
* + ∑k∈S(t) wk

t ∑n=1
N fn(zkn

t)bn
*. 

 
Subtracting (A32) from (A31) leads to the following equation: 
 
(A34) ∑k∈S(s) wk

s ln pk
s = [∑k∈S(s) wk

s]b0
* + ∑k∈S(s) wk

s ∑n=1
N fn(zkn

s)bn
*. 

 
Finally, subtracting (A34) from (A33) leads to (A29) after a bit of rearrangement.  Q.E.D. 
 
Corollary 5.1: The solution coefficients cst

*, b0
*, b1

*,..., bN
* to (A2) satisfy the following 

two equations:  
 
(A35) cst

* = {∑k∈S(t) wk
t [ln pk

t − b0
* − ∑n=1

N fn(zkn
t)bn

*]}/∑i∈S(t) wi
t ; 

(A36)    0 = {∑k∈S(s) wk
s [ln pk

s − b0
* − ∑n=1

N fn(zkn
s)bn

*]}/∑i∈S(s) wi
s . 

 
Proof: (A35) is a rearrangement of (A33) and (A36) is a rearrangement of (A34). Q.E.D.   
 
Corollary 5.2: If the models are identical during the two periods and the weights are also 
identical across periods for the same model, then the hedonic price index P(ps,pt,qs,qt) 
defined by (A3) is equal to a weighted geometric mean of the model price relatives, 
where the weights are proportional to the common model weights, wk

s = wk
t ≡ wk. 

 
Proof:  Under the stated hypotheses, the last 4 sets of terms on the right hand side of 
(A29) sum to zero and hence the logarithm of P(ps,pt,qs,qt) is equal to: 
 
(A37) cst

* = ∑k=1
K wk ln [pk

t
 /pk

s]/[∑j=1
K wj] 

 
which establishes the desired result.  Q.E.D. 
 
Corollary 5.3: If the models are identical during the two periods and the weight for 
model k is chosen to be the arithmetic average of the expenditure shares on the model for 
the two periods, (1/2)sk

s + (1/2)sk
t, then the hedonic price index P(ps,pt,qs,qt) defined by 

(A3) is equal to the Törnqvist (1936) price index. 
 
Proof: Apply (A37) with wk ≡ (1/2)sk

s + (1/2)sk
t.  Q.E.D. 
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We conclude this Appendix by noting that the second equation in (A29) has a nice 
interpretation in the light of our discussion of quality adjusted price relatives in section 4 
above: it can be seen that cst

* is equal to a weighted sum of the logarithms of the quality 
adjusted prices of the models sold in period t less another weighted sum of the logarithms 
of the quality adjusted prices of the models sold in period s.  Using Corollary 5.1, we can 
establish the following formula for cst

*, where the constant term b0
* has been eliminated 

from (A29): 
 
(A38) cst

* = ∑k∈S(t) sk
t [ln pk

t − ∑n=1
N fn(zkn

t)bn
*] − ∑k∈S(s) sk

s [ln pk
s − ∑n=1

N fn(zkn
s)bn

*] 
 
where sk

t ≡ wk
t/*∑i∈S(t) wi

t for k∈S(t) and sk
s ≡ wk

s/*∑i∈S(s) wi
s for k∈S(s) so that the 

weights in (A38) now sum up to one in each period.  Thus the two weighted sums in 
(A38) become weighted averages of the logarithms of quality adjusted prices.  If the 
characteristics transformation functions fn are log functions, then the interpretation of 
(A38) becomes particularly transparent.40                                     
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