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Abstract 

In this paper, I present new identification results and proposes an estimation 
method for an eBay auction model with an application. A key difficulty with 
data from eBay auctions is the fact that the number of potential bidders willing to 
pay the reserve price is not observable and the number of potential bidders var-
ies auction by auction. While this precludes application of existing estimation 
methods, I show that this need not preclude structural analysis of the available 
bid data. In particular, I show that within the symmetric independent private 
values (IPV) model, observation of any two valuations of which rankings from 
the top is known (for example, the second- and third-highest valuations) non-
parametrically identifies the bidders' underlying value distribution. In contrast to 
the results of previous studies, the researcher does not need to know the number 
of potential bidders willing to pay the reserve price nor assume that the number 
of potential bidders is fixed across auctions. I then propose a consistent estimator 
using the semi-nonparametric maximum likelihood estimation method devel-
oped by Gallant and his coauthors. Several Monte Carlo experiments are con-
ducted to illustrate its performance. The simulation results show that the pro-
posed estimator performs well. I apply the proposed method to university year-
book sales on eBay. Using my estimate of bidders' value distribution, I explore 
the effects of sellers' ratings on bidders' value distribution; compute consumers' 
surplus; and examine a regularity assumption that is often made in the mecha-
nism design literature. 
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1 Introduction

This paper develops and applies a new method for structural analysis of Internet auction data.1

The rising popularity of Internet auctions has generated widespread interest in interpreting on-

line bidding data. Nevertheless, structural analysis of Internet auction data has been severely

limited due to a lack of adequate econometric methods. A key difficulty with data from Inter-

net auctions is the fact that the number of potential bidders is unknown. Prior research has

suggested solutions for the case in which the number of potential bidders is unavailable, but

all of the studies require assumptions which is not plausible in Internet auction circumstances.

Bajari and Hortaçsu (2002a), and Paarsch (1997) do not require knowledge of the number of

potential bidders, but they assume that the observed bidders are all potential bidders willing to

pay the reserve price. However that assumption is not plausible in Internet auctions, because

Internet auctions use an ascending-bid format. In Internet auctions, the standing price starts

at the reserve price (starting price) and rises as a new bid is submitted. Consequently one can

never know of the number of bidders who intended to take part in auctions, but visited auction

sites only to find that the standing prices were already raised by their competitors over their

own willingness-to-pay. Although Laffont, Ossard, and Vuong (1995) do not assume that the

observed bidders are all potential bidders willing to pay the reserve price, they instead assume

that the number of potential bidders is the same across all auctions under consideration. Fur-

thermore all of three papers make a parametric distributional assumption regarding the bidders’

value distribution. Nonparametric approaches have been proposed by several recent papers, for

instance, Athey and Haile (2002), Guerre, Perrigne, and Vuong (2000), and Haile and Tamer

(2002). They all need knowledge of the number of potential bidders willing to pay the reserve

price.

In order to overcome this difficulty with Internet auction data, I provide new identification

results and an estimation strategy that can be used to recover the bidders’ underlying value

distribution without knowledge nor an assumption regarding the number of potential bidders.

I show that the bidders’ underlying value distribution is nonparametrically identified from ob-

servations of any two valuations of which rankings from the top are known (for example, the

second- and third-highest valuations) within the standard symmetric independent private val-

1Actually, I focus only on eBay auctions. eBay is the dominant Internet auction site, and most auction sites

have copied the eBay auction format.
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ues (IPV) framework.2 Within the eBay bidding model which I propose, the joint distribution

of the second and third-highest valuations are identified from available eBay bidding data. I

then propose a consistent estimator, using the semi-nonparametric maximum likelihood (SNP)

estimation method developed by Gallant and his coauthors, and evaluate it by Monte Carlo

experiments.3

The key insight into the identification result is revealed by Lemma 1 which shows that the

distribution of two order statistics from an independent and identically distributed (i.i.d) sample

uniquely determines the parent distribution, even if the size of each sample is unknown and varies

sample by sample. To see the intuition, consider the special case in which we observe the joint

distribution of the second-highest order statistic, Y , and the third-highest order statistic, X from

an i.i.d. sample which is drawn from an absolutely continuous distribution F (·). Let Z denote

the corresponding highest order statistic, which is not observed. If we condition onX = x, (Z, Y )

is an ordered random sample of size two from the parent distribution, [F (·)−F (x)] / [1−F (x)],
whatever the size of the sample that (Z, Y,X) comes from. Hence, regardless of the sample

size, the distribution of Y conditional on X = x is the same as the distribution of the lower

order statistic from a sample of size two from the distribution [F (·) − F (x)] / [1 − F (x)]. The

distribution of a single order statistic from an i.i.d. sample of a known sample size identifies the

parent distribution. Hence, the truncated distribution [F (·)−F (x)] / [1−F (x)] is identified for

all x on the support of F (·). Letting x be the lower limit of the support of F (·) then gives the
result.

Recently, research on Internet auctions become more and more important, because these

auctions have become such a popular exchange mechanism. According to eBay, on any given day,

more than 16 million items are listed on the site across 27,000 categories. In 2002, eBay members

transacted $14.87 billion.4 In addition to the huge increase in transaction volume, professional

eBay sellers have increased. Even big companies such as IBM and Xerox sell their products

through eBay. Among the 923 auctions in my dataset, the seller has more than 1,000 ratings

at 334 auctions. One seller has 18,271 ratings; this means that she has made at least 18,271

2For a definition of nonparametric identification, see Roehrig (1988).
3For the SNP estimator, see Gallant and Nychka (1987), Fenton and Gallant (1996 a,b), and Coppejans and

Gallant (2002).
4http://pages.ebay.com/community/aboutebay/overview/index.html. For a broad survey of Internet auctions,

see Lucking-Reiley (2000) or Bajari and Hortaçsu (2002b)
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transactions through eBay. All of these imply that eBay is no longer an amateurs’ casual market

or a nationwide garage sale; it has become an alternative market through which many sellers

make their living. Accordingly, we need to study this new enlarging market and this paper takes

the first step toward an analysis of the issues involved with demand structure such as taxation

or monopoly issues by providing a method to recover bidders’ value distribution.5 Moreover,

in application I actually study the effect of sellers’ ratings on bidders’ value distribution; to

compute consumers’ surplus; and to check whether the assumption that the virtual value is

increasing in valuation is satisfied.

Analysis of Internet auctions is important also because these auctions provide an extremely

large amount of data and thus a strong basis for empirical study. A growing number of re-

searchers use eBay auction data to study various economic issues.6 The estimation strategy

developed in this paper will be useful to future studies that require inference from eBay auction

data.

Besides Internet auctions, there are many auctions in which the number of potential bidders

willing to pay the reserve price is not available. First of all, in ascending auctions, even a bidder

with valuation above a reserve price may not make a bid. Hence in order to know the number

of potential bidders with valuations above a reserve price, complementary data is necessary in

addition to each bidder’s bid record. Such a data is not always available, for example British

Colombian timber auctions (Paarsch, 1997). The free-structure of bidding in ascending auctions

can lead to a debate regarding whether we can obtain two precise valuations with their top-down

rankings, which are needed in my method of estimation. However, my method still improve the

existing methods which assume that observed bidders are all potential bidders with valuations

over the reserve price. Even in first-price sealed-bid auctions, the number of potential bidders

willing to pay the reserve price may not be observed if there are bid participation costs. For

example, in the participation model considered in Samuelson (1985), some of potential bidders

with valuations above the reserve price do not take part in auctions. Song(2004) extends the

results of this paper to a first-price auction model and so the method in this paper is useful to

5Sales tax is currently applied only to in-state transactions; how to impose sales tax on online transactions has

been a debated issue. Monopoly issues may be raised because eBay seems to be the dominant auction site, even

though it imposes relatively high posting fees.
6See Cabral and Hortaçsu (2003), Houser and Wooders (2001), Resnick and Zeckhauser (2002), Engelbrecht-

Wiggans, List, and Lucking-Reiley (1999), Hossain and Morgan (2003), Yin (2002), etc.
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structural analysis of first-price auctions in which the number of potential bidders willing to pay

the reserve price is unknown.

The rest of the paper is organized as follows: The next section explains the eBay auction

format, and Section 3 presents an eBay bidding model. In Section 4, the most crucial part of

this paper, I provide the econometric model and its identification result. Section 5 proposes a

consistent estimator, and then Section 6 evaluates it through Monte Carlo experiments. I apply

the proposed method to a sample of eBay auctions in Section 7 and make concluding remarks

in Section 8.

2 Background: eBay Auctions

This section briefly explains the eBay auction mechanism. Bajari and Hortaçsu (2002a,b) and

Bryan et al. (2000) offer the interested reader richer descriptions. I consider only auctions in

which a single item is sold. I exclude secret reserve price auctions as well as auctions ended by

a bidder’s use of a "buy it now" option. An eBay auction starts as soon as a seller registers it.

An eBay seller has several options when she lists her item. She can set a starting price and also

choose the time length of her auctions: three, five, seven or ten days. Potential buyers can find

auctions of interest by browsing the categorized auction listings or by using a search engine. No

advance announcement of an auction exists, therefore there is no reason to expect all potential

bidders to become aware of the auction at the same time. Below, I will explicitly model the

stochastic arrival times of bidders during an auction.

All auctions proceed according to the rules pre-announced by eBay. All eBay auctions use

an open, ascending-bid format that is different from a more traditional auction’s ascending bid

format in two respects. First, there is a fixed ending time instead of a "going-going-gone" ending

rule. Second, eBay uses the proxy bidding system. A bidder is asked to submit a cutoff price,

a maximum bid, instead of his instant bid amount. The proxy bidding system then will issue a

proxy bid equal only to the minimum increment over the next highest bid. If a competitor’s bid

is greater than the bidder’s cutoff price, the proxy bidding system will not issue a bid for the

bidder.

The maximum proxy bid is posted as the standing price next to a current winner’s identity.

For example, consider an auction in which a seller starts the bidding at $5, and the first-arrived
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bidder submits $25 as his cutoff price. The proxy server issues a proxy bid of $5 on the first-

arrived bidder’s behalf and posts $5 as the standing price. Suppose another bidder arrives and

submits a cutoff price of $20. The proxy server then bids $20 plus the minimum increment

for the first-arrived bidder and displays it as the standing price. As a result of the proxy

bidding system, the standing price is the second-highest existing cutoff price plus the minimum

increment. During the course of the auctions, if the cutoff price submitted by a new bidder is

not high enough to lead the auction, or the current auction leader is outbid, eBay notifies the

bidder via e-mail so that he may revise his cutoff price if he so desires. A bidder may keep or

increase his previous cutoff price at any time, but may not decrease it.

Once an auction has concluded, the winner is notified by e-mail and pays the standing price

posted at the closing time. Thus, a winner pays the second-highest bid plus the minimum

increment. As soon as an auction ends, eBay discloses all bidders’ cutoff prices except the

highest one. (During the auction, only the bidders’ identities and bidding times are available.)

If a bidder submitted cutoff prices multiple times, every cutoff price and its corresponding

bidding time is shown. All auction listings and their results remain publicly available on eBay

for at least one month after the auction closes.

3 A Model of Bidding in eBay Auctions

3.1 The Model

Consider an eBay auction of a single object. The number of potential bidders, N, is a random

variable, with pn = Pr(N = n). Each potential bidder’s valuation V i is an independent draw

from the absolutely continuous distribution F (·), having support on [v, v]. Each bidder knows
only his valuation, the distribution F (·), and the probabilities pn. The analysis would be identical
were bidders to know the realization of N , as is usually assumed in the literature. For the sake

of simplicity, I ignore the minimum increment.7

The auction is conducted over an interval of time [0, τ ]. In practice, this is 3, 5, 7 or 10

days, typically 7. I assume that bidders do not monitor the auction continuously. Rather, each

7The amount of the minimum increment is predetermined and posted by eBay. The minimum increment is,

for instance, $0.50 when the standing price is $5.00 - $24.99. Such a small, minimum increment seems unlikely to

affect bidders’ bidding behaviors significantly.
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bidder has a finite set of monitoring opportunities T i = {ti1, ..., tiei} (tij ∈ [0, τ ]). The number
of monitoring opportunities and the time of each monitoring opportunity are random variables,

the realizations of which are known at time ti1 to bidder i but are unknown to i’s opponents.8

The number of monitoring opportunities, ei, is drawn from a distribution defined on {1, 2, ..., e}.
As many monitoring times as ei are drawn independently from a continuous distribution with

support [0, τ ]. Without loss of generality, we order the monitoring times such that ti1 < ... < tiei .

At each monitoring opportunity in T i, bidder i sees the standing price and is free to submit

a new cutoff price.9 At time 0, the standing price, denoted by ht (t ∈ [0, τ ]), is initialized at
the starting price set by the seller. As the auction proceeds, ht is raised to the value of the

second-highest cutoff price transmitted prior to t. If the number of existing bidders is less than

two, ht stays at the starting price. The auction ends at time τ , with the highest bidder declared

the winner at a price equal to the second-highest cutoff price.

I consider a strategy for bidder i that specifies the cutoff price he will submit at each time

t ∈ T i as a function of his valuation, the history of the standing prices that he has monitored, and

his most recent cutoff price.10 The history of the standing prices at i’s monitoring opportunities

is denoted by a set Hi
tik
= {h0, hti1 , ..., htik}(k = 1, ..., ei). Ci

t represents bidder i’s most recent

cutoff price at time t, and Ci
t = 0 indicates that bidder i has not transmitted a cutoff price by

time t. Obviously Ci
t = 0 for t < ti1. Those who submit a cutoff price are called actual bidders.

Potential bidder i’s strategy can be described by functions stik(v
i|Htik

, cit(k−1)) (k = 1, ..., ei)

which specify his cutoff price at each time tik.

Theorem 1.1 provides a characterization of all symmetric Bayesian-Nash equilibria of this

game and show that all satisfy two key conditions: (a) No bidder ever submits a cutoff price

greater than his valuation, and (b) At his final submission time (tiei), bidder i submits a cutoff

8One might consider a model in which T i were endogenous rather than exogenous, as assumed here. I model

T i as exogenous, because T i is likely to be more influenced by bidder i’s personal schedule than by the proceedings

of the auction. Further, since the model allows bidder i to choose his actual bidding time(s) from the set T i, little

may be lost by making this simplifying assumption.
9An eBay bidder can submit a cutoff price as many times as he wants. I will call only the finally submitted

cutoff price his "bid."
10 I do not include previous bidders’ identities in bidding functions. eBay does not post each bidder’s bid amount

during auctions, so previous bidders’ identities play the same role as the number of previous bidders in symmetric

equilibria, on which I focus. Including the number of previous bidders in bidding functions would have no effect

on Theorem 1.
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price equal to his valuation if he has not yet done so, and his valuation is greater than the standing

price at that time (hti
ei
). Note that many patterns of bidding are possible in equilibrium. For

example, bidder i may submit a cutoff price equal to his valuation vi immediately after he finds

the auction, he may postpone his submission until time tiei , or he may submit a cutoff price

lower than vi and update his cutoff price over time.

Theorem 1 The strategies So = (so
ti1
(vi|Hti1

, cti0
), ...so

ti
ei
(vi|Hti

ei
, cti

ei−1
)) constitute a symmetric

Bayesian-Nash equilibrium if and only if they induce:

(a) cit ≤ vi ∀ t and (b) ci
ti
ei
= vi if vi > hti

ei
.

Proof. (Sufficiency) Let m = argmax
k

vk. Suppose all bidders other than i use a strategy

inducing (a) and (b). Regardless of i0s strategy, the standing price cannot have risen above vm

by time tem , so that by part (b), cmτ = vm = max
k 6=i

ckτ . Hence, if bidder i wins, he pays c
m
τ . Thus,

any strategy inducing bidder i (i) to lose when vi < cmτ , and (ii) to win when vi > cmτ , is a best

response. Condition (a) guarantees (i), and condition (b) guarantees (ii).

(Necessity) The necessity of (b) ci
ti
ei
= vi if vi > hti

ei
: A bidder might affect rivals’ cutoff

prices through the effect on the sequences of standing prices (the second-highest existing cutoff

price) posted during the auction. Let me denote by h(ci
ti
ei
) the (final) second-highest cutoff price

as a function of ci
ti
ei
.11

(1) A strategy inducing ci
ti
ei
= vi is strictly preferable to a strategy inducing ci

ti
ei
= c < vi.

(i) ci
ti
ei
= vi is strictly preferable to ci

ti
ei
= c if Pr(c < Bj < vi) > 0 where Bj = Cj

tj
ej

(vj)

(j 6= i).

Consider the case in which h(c) is no greater than c. Noting that the standing price is the

second-highest cutoff price, any c which is greater than c would result in the same sequence of

standing prices as c would result; therefore, h(c) = h(c) for any c ≥ c. Then ci
ti
ei
= vi yield

the same payoff as ci
ti
ei
= c. Next, consider the case in which h(c) is greater than c. Bidder

i then loses an auction to obtain zero payoff if he uses a strategy inducing ci
ti
ei
= c. Noting

that ci
ti
ei
= vi always guarantees at least zero payoff, we can conclude that a strategy inducing

ci
ti
ei
= vi always yields as much as a strategy inducing ci

ti
ei
= c. Now if we find one case in which

a strategy inducing ci
ti
ei
= vi yields more payoff than a strategy inducing ci

ti
ei
= c does, we can

11The (final) second-highest cutoff price depends on other cutoff prices as well. When I use h(ci
ti
ei
) below, I

assume that only ci
ti
ei
is changed.
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say that ci
ti
ei
= vi is strictly preferable to ci

ti
ei
= c. Consider Case A: c < h(c) < vi and h(c)

is only cutoff price greater than c. In that case, if the second-highest cutoff price is h1 when

h(c) is submitted, under a strategy inducing ci
ti
ei
= c, the second-highest cutoff price will be

also h1 under a strategy inducing citi
ei
= vi. Hence, h(vi) = h(c). Therefore a strategy inducing

ci
ti
ei
= vi yields more payoff (vi− h(c)) than a strategy inducing ci

ti
ei
= vi yields (zero). Noting

the symmetry assumption, it is straightforward that Case A happens with positive probability

if Pr(c < Bj < vi) > 0 where Bj = Cj

tj
ej

(vj)(j 6= i).

(ii) In any symmetric Bayesian equilibrium, Pr(b1 < B < b2) > 0 for v ≤ b1 < b2 ≤ v

where B represents Ck
tk
ek
(vk) of an arbitrary bidder k. Suppose that there exists (b1, b2) such

that Pr(b1 < B < b2) = 0. Let b = sup
b
{b|Pr(B ∈ [b, b1) = 0} and b = inf

b
{b|Pr(B ∈ (b2, b]) = 0}.

Then Pr(b < B < b) = 0; this implies that every bidder uses a strategy inducing b ≤ b or

b ≥ b in the symmetric equilibrium. Below I show that there is a bidder j who has a strictly

preferable strategy to a strategy inducing bj ≤ b or bj ≥ b. Consider a bidder j whose valuation,

vj is between b and b. First, suppose that bidder j uses a strategy inducing bj ≤ b with positive

probability. By construction of b, Pr(c < Bj < vj) > 0 for any c < b. Then by (i), a strategy

inducing bj = vj is a strictly preferable strategy to a strategy inducing bj < b. Accordingly, bidder

j must use a strategy inducing bj = b. Since this is the case for all bidders whose valuation is

between b and b, Pr(B = b) > 0. However, if Pr(B = b) is positive, a strategy inducing bj = vj

is strictly preferable to a strategy inducing bj = b. To see this, note that Pr(b < B < vj) = 0.

Hence the deviation from bj = b to bj = vj increases the winning probability without increasing

the payment conditional on winning. Accordingly no bidder whose valuation is between b and b

use a strategy inducing bj ≤ b in a symmetric Bayesian equilibrium.

Next, suppose that bidder j uses a strategy inducing bj ≥ b with positive probability. By

construction of b, Pr(vj < Bj < c) > 0 for any c > b. Hence any strategy inducing bj > b obtains

a negative payoff with positive probability. Therefore any strategy inducing bj > b should not

be played with positive probability. Accordingly, bidder j must use a strategy inducing bj = b.

Since this is the case for all bidders whose valuation is between b and b, Pr(B = b) > 0. However,

if Pr(B = b) is positive, a strategy inducing bj = vj is strictly preferable to a strategy inducing

bj = b, because a strategy inducing bj = b results in a negative payoff with positive probability.

Accordingly no bidder whose valuation is between b and b use a strategy inducing bj ≥ b in a

symmetric Bayesian equilibrium.
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Therefore no bidder whose valuation is between b and b use a strategy inducing bj ≤ b or

bj ≥ b; this contradicts there exists (b1, b2) such that Pr(b1 < B < b2) = 0.

From (i) and (ii), we can conclude that a strategy inducing ci
ti
ei
= vi is strictly preferable to

a strategy inducing ci
ti
ei
= c < vi.

(2) A strategy inducing ci
ti
ei
= vi is strictly preferable to a strategy inducing ci

ti
ei
= c > vi.

Consider the case in which h(c) is no greater than vi. Noting that the standing price is the

second-highest cutoff price, any c which is greater than h(c) would result in the same sequence

of standing prices as c would result; therefore, h(c) = h(c) for any c ≥ h(c). Then ci
ti
ei
= vi yield

the same payoff as ci
ti
ei
= c. Next, consider the case in which h(c) is greater than c. Bidder i then

loses an auction to obtain zero payoff by using a strategy inducing ci
ti
ei
= c. Noting that ci

ti
ei
= vi

always guarantees at least zero payoff, a strategy inducing ci
ti
ei
= vi always yields as much as a

strategy inducing ci
ti
ei
= c. Finally consider the case in which h(c) is between vi and c. In this

case, bidder i then obtains a negative payoff by using a strategy inducing ci
ti
ei
= c. Again, since

a strategy inducing ci
ti
ei
= vi always guarantees at least zero payoff, a strategy inducing ci

ti
ei
= vi

is more profitable. Moreover by (ii) of (1) above, it happens with positive probability that h(c)

is between vi and c.

Accordingly, we can conclude that a strategy inducing ci
ti
ei
= vi is strictly preferable to a

strategy inducing ci
ti
ei
= c > vi.

Next, the necessity of (a) cit ≤ vi : It is straightforward from the necessity of (b). Since an

eBay bidder may not decrease his previous cutoff price, any strategy inducing cit > vi cannot

equalize ci
ti
ei
with vi.

Theorem 1 shows that, although there may be multiple equilibria, in every equilibrium, the

two highest-valued potential bidders, whose valuations cannot be lower than the standing price

at any time, always bid their valuations before the auction ends. On the other hand, lower-than-

second-highest-valued bidders will bid their valuations only if they choose to do so before the

standing price rises above their valuations. Therefore, some potential bidders may not make a

bid at all or may not update their early cutoff prices, even though these were lower than their

valuations.

The proof of Theorem 1 demonstrates that every equilibrium is an ex-post equilibrium:12

even if the actual number of potential bidders n and all potential bidders’ private information

12For a definition of ex post equilibrium, see Appendix F of Krishna (2002) or references therein.
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{vi, T i}ni=1 were known to a particular bidder i, his equilibrium strategy would still be optimal.

This suggests robustness to changes in assumptions that a bidder knows distribution F (·) and
the probabilities pn, which might be valuable for an Internet auctions where the used common

knowledge assumptions concerning F (·) and pn may be implausible.

3.2 Discussion

At this point, I will briefly discuss the relationship of this model to some stylized facts about

eBay auctions, and to other existing models of eBay auctions. Previous research concerning

eBay auctions such as Bajari and Hortaçsu (2002a), Ockenfels and Roth (2002), and Roth and

Ockenfels (2002) has pointed out that late-bidding is prevalent. The above result does not

contradict late-bidding. For example, in one equilibrium, all bidders wait until their own, last

monitoring times to submit any cutoff prices. However, this model does not explain why late-

bidding is observed more frequently than early-bidding: here, bidders have no reason to bid late,

but also no reason not to. Equilibrium selection is a difficult issue that I need not address here.

Bajari and Hortasçu (2002a) study eBay auctions within the common value paradigm. They

show that on an equilibrium, bidders will bid at the end of the auction in order not to reveal

their private information to other bidders in a common value environment. Ockenfels and Roth

(2002) construct a model which, like mine, has multiple equilibria, including one involving last-

minute bidding in private value environments. However, in their model, on an equilibrium path

in which the last-minute bidding happens, every bid in an auction should be submitted in the

auction’s last seconds; that is hardly ever observed in practice. The strength of Theorem 1 is

that it characterizes all symmetric Bayesian-Nash equilibria. In Bajari and Hortasçu (2002a)

and Ockenfels and Roth (2002), they show only that their equilibria is an equilibrium.

4 Econometric Model

Throughout this paper I represent random variables in upper case and their realizations in lower

case. I consider a sample of independent eBay auctions. Assume that potential bidders’ value

distribution, F (·), is fixed in all auctions under consideration.13 Let Nt denote the number of po-

13Standard arguments extend the IPV model to the model in which bidders’ valuations are i.i.d. conditional

on auction-specific observables. To avoid unnecessary complexity, the model maintains the IPV assumption. In
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tential bidders at each auction t. Unlike the potential bidders’ value distribution, the distribution

of Nt may vary auction by auction in an arbitrary way. At each auction t, V
(1:Nt)
t , ..., V

(Nt:Nt)
t are

order statistics of potential bidders’ valuations, with V (k:Nt)
t denoting the kth-lowest among Nt.

Each V
(i:Nt)
t is distributed according to F (i:Nt). Let I(k:Nt)

t denote the identity of the potential

bidder whose valuation is V (k:Nt)
t .

The primary model primitive of interest is F (·). While F (·) is sufficient for answering many
policy questions, in some cases we may also be interested in the distribution of Nt. I focus on

a structure in which the distribution of Nt varies freely across auctions, and is therefore not

identified. However, in Appendix B, I discuss identification of the distribution of Nt under the

restrictive assumption (but the minimum requirement for identification) that the distribution

of Nt is fixed across auctions. To make the key idea conspicuous, I derive identification results

in this section by assuming that starting prices are below v. Appendix C extends the results to

auctions in which a seller sets a binding starting price, s > v, in a way similar to that in Athey

and Haile (2002) and Haile and Tamer (2003).

For each auction, a researcher can observe each actual bidder’s history of cutoff prices:

identity, the amounts of all submitted cutoff prices (except for the winning bid), and their

submission times (including winning bid’s submission time). The amount of the winning bid is

not revealed, even after an auction ends. On top of this information concerning actual bidders,

various auction details, such as starting prices and sellers’ ratings, are available as well. I explain

those observables when it becomes necessary to this study. Actual bidder i’s final cutoff price,

Ci
ti
ei
(= Ci

τ ), is called i’s bid and denoted by Bi
t. Let Mt denote the number of actual bidders,

and B(1:Mt)
t , ..., B

(Mt−1:Mt)
t denote the ordered set of the observed bids. eI(k:Mt)

t is the identity of

the actual bidder who submitted the kth-lowest among Mt bids.

4.1 Two Order Statistics Identify the Parent Distribution

A key feature of eBay auctions, captured by the theoretical model, is the fact that the number of

potential bidders is not observable. As you will see this identification issue eventually reduces to

a statistical question of whether a parent distribution is uniquely determined by the distribution

of its order statistics from a sample, of which the size is unknown. It is not obvious whether or

not one can discriminate between changes in the parent distribution and changes in the sample

the application, however, bidders’ value distribution is allowed to vary with auction characteristics.
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size, since the joint distribution of order statistics depends on both the parent distribution and

the sample size.

The ith order statistic and jth order statistic (n ≥ j > i ≥ 1) from an i.i.d sample of size n

from distribution F (·) have a joint probability density function (PDF)

g(i,j:n)(x, y) =


n![F (x)]i−1[F (y)−F (x)]j−i−1[1−F (y)]n−jf(x)f(y)

(i−1)!(j−i−1)!(n−j)! , y > x

0, otherwise.
(1)

The ith order statistic has a PDF

g(i:n)(x) =
n!

(i− 1)!(n− i)!
[F (x)]i−1 [1− F (x)]n−i f(x) (2)

and CDF

G(i:n)(x) =
n!

(i− 1)!(n− i)!

Z F (x)

0
ti−1(1− t)n−idt (3)

(See, for example Arnold et al., 1992).

Lemma 1 An arbitrary absolutely-continuous distribution F (·) is nonparametrically identified
from observations of any two order statistics from an i.i.d sample, even when the sample size,

n, is unknown and stochastic.

Proof. There are two possibilities concerning available order statistics: (1) The distance

from the top is known; for instance, there is a pair consisting of the second- and third-highest

order statistic, and (2) The distance from the bottom is known; for instance there is a pair

consisting of the lowest and third-lowest order statistic. The first case is relevant to eBay

auctions, so I present its proof here, while the proof for (2) is provided in Appendix A. The

second case may be relevant to procurement auctions.14

Let Y denote the k1th-highest value, which is the (n − k1 + 1)th order statistic, and X

denote the k2th-highest value, which is the (n−k2+1)th order statistic (1 ≤ k1 < k2 ≤ n). The

lower limit of support of F (·) is denoted by v, and f(·) is an associated density of F (·). It is
14One could imagine a possibility that for one, the ranking from the top is known and for the other, the ranking

from the bottom is known. Lemma 1 is not applicable to that case.
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possible that v = −∞. For the sake of notational convenience, let F (·|x) denote the truncated
distribution of F (·) truncated at x, and f(·|x) denote an associated density.

The density of Y conditional on X, p(k2,k1)(y|x), is computed by employing equations (1)
and (2):

p(k2,k1)(y|x) =
(k2 − 1)!

(k2 − k1 − 1)!(k1 − 1)! (4)

× [F (y)− F (x)]k2−k1−1[1− F (y)]k1−1f(y)
(1− F (x))k2−1

· I{y≥x}

=
(k2 − 1)!

(k2 − k1 − 1)!(k1 − 1)! × [(1− F (x))F (y|x)]k2−k1−1

× [(1−F (x))(1− F (y|x))]k1−1f(y|x)(1− F (x))

(1− F (r))k2−1
· I{y≥x}

=
(k2 − 1)!

(k2 − k1 − 1)!(k2 − 1− (k2 − k1))!

×F (y|x)k2−k1−1(1− F (y|x))k1−1f(y|x) · I{y≥x}
= f (k2−k1:k2−1)(y|x).

Now note that lim
x→v

p(k2,k1)(y|x) = f (k2−k1:k2−1)(y). This implies that the k1th- and k2th-

highest order statistics identify the density of the (k2 − k1)th order statistic from a sample of

which the size is (k2 − 1) from F (·). The proof of Theorem 1 in Athey and Haile (2002) shows

that the parent distribution is identified whenever the distribution of any order statistic with a

known sample size is identified. Thus, the result follows.

4.2 Identification in the eBay Model

Theorem 1 implies that B
(Mt−1:Mt)
t = V

(Nt−1:Nt)
t , eI(Mt:Mt)

t = I
(Nt:Nt)
t , andeI(Mt−1:Mt)

t = I
(Nt−1:Nt)
t in all auctions in which Mt ≥ 2.15 In other words, one observes the

second-highest valuation and the identities of the highest and second-highest potential bidders.

Generally, Nt 6= Mt, so a researcher knows that the observed B
(Mt−1:Mt)
t is the second-highest

valuation, but she/he does not know the number of potential bidders among whose valuations,

15More precisely, V (Nt−1:Nt)
t is the shipping and handling charge over the second-highest bid. In estimation,

I use the second-highest bid plus the shipping and handling charge as the observation of the second-highest

valuation. I adjust other observables related to the shipping and handling charge in the same way.

13



B
(Mt−1:Mt)
t is the second-highest. However, observation of the second-highest valuation alone is

not enough to identify F (·), when Nt is unknown. To see this, consider two underlying struc-

tures: (i) F (x) = x1/2 defined on [0, 1] with Pr(Nt = 3) = 2/3, and Pr(Nt = 4) = 1/3, (ii)

F (x) = x defined on [0, 1] with Pr(Nt = 2) = 1. Both structures generate the same distribution

of B(Mt−1:Mt)
t which is F (Nt−1:Nt) = 2x− x2.

Lemma 1 implies that observations of two order statistics of valuations identify F (x), even

if Nt is unknown. Theorem 1 guarantees only that two highest-valued potential bidders always

submit their true valuations, so a researcher can conclude only that B
(k:Mt)
t ≤ V

(k:Nt)
t for

1 ≤ k ≤Mt − 2. However, observations of the two highest-valued potential bidders’ submission
times of all cutoff prices enable us to know in which auctions B(Mt−2:Mt)

t = V
(Nt−2:Nt)
t is more

likely. Indeed, I shall be able to construct a sequence of auction sets, {Awindow}, such that
Pr(B

(Ma−2:Ma)
a = V

(Na−2:Na)
a )→ 1 for an auction a ∈ Awindow, as window → 0.

Before providing the formal result, I explain how the two highest-valued potential bidders’

submission times are related to finding auctions in which B
(Mt−2:Mt)
t = V

(Nt−2:Nt)
t . The model

shows that the only reason for a potential bidder not to have bid his valuation is that the standing

price became higher than his valuation before he had a chance to submit that valuation. The

standing price cannot rise to higher than the third-highest valuation until both the first- and

second-highest bidders have submitted cutoff prices greater than the third-highest valuation.

Thus, by looking at auctions where the first- or the second-highest bidder submitted a cutoff

price greater than the third-highest bid late in the auction, we can increase the probability of

obtaining the actual third-highest valuation. The following example illustrates this. Consider

an item that has four potential bidders: Bidder A’s valuation is $25; Bidder B’s is $20; Bidder

C’s is $15; and Bidder D’s is $10. Examine the following two situations:

Situation 1:

(1) An auction starts at $5. (Standing price: $5)

(2) Bidder A submits a $25 cutoff price 24 hours before the auction ends. (Standing price: $5)

(3) Bidder D submits a $10 cutoff price 12 hours before the auction ends. (Standing price: $10)

(4) Bidder B submits a $20 cutoff price 2 hours before the auction ends. (Standing price: $20)

14



Situation 2:

(1) An auction starts at $5. (Standing price: $5)

(2) Bidder A submits a $12 cutoff price 24 hours before the auction ends. (Standing price: $5)

(3) Bidder D submits a $10 cutoff price 12 hours before the auction ends. (Standing price: $10)

(4) Bidder B submits a $20 cutoff price 2 hours before the auction ends. (Standing price: $12)

(5) Bidder A submits a $25 cutoff price 10 seconds before the auction ends. (Standing price: $20)

Suppose that in Situation 1, Bidder C tries to submit a cutoff price of his valuation 10 minutes

before the auction ends. He would be unsuccessful, because the standing price is already higher

than his valuation. The observed third-highest bid would then be the fourth-highest valuation.

In Situation 2, on the other hand, he would successfully submit a cutoff price equal to his

valuation, so the observed third-highest bid would, in fact, be the third-highest valuation.

In order to obtain the formal result, I start by defining an auction set that consists of auctions

in which the observed, third-highest bids are in fact the third-highest valuations.

Definition 1 (The set of auctions A∗(τ∗)): Let τ∗ be the (unobserved) third-highest potential

bidder’s final monitoring opportunity. An auction a is in the set A∗(τ∗) if and only if

min{C eINa−1:Na
τ∗ , C

eINa:Na
τ∗ } < B(Ma−2:Ma)

a . (5)

In other words, auctions in the set A∗(τ∗) are those in which, at time τ∗, at least one of the

first- and second-highest-valued bidders’ cutoff prices is less than B
(Na−2:Na)
a . Recall that the

top two observed bidders are the potential bidders with the highest valuations.

Corollary 1 In every auction in the set A∗(τ∗), B(Ma−2:Ma)
a = V

(Na−2:Na)
a .

Proof. This is obvious in the case where the third-highest potential bidder submitted his

valuation before his final opportunity. For any other cases, note that only the two highest-valued

bidders would ever submit cutoff prices greater than V
(Na−2:Na)
a . Hence, the standing price at

time τ∗ must be less than V
(Na−2:Na)
a , when condition (5) holds. Condition (b) in Theorem 1

then yields that C eINa−2:Na
τ∗ = V

(Na−2:Na)
a = B

(Ma−2:Ma)
a .

Definition 2 (The set of auction Awindow): Let τa be the ending time of auction a. An auction

a ∈ Awindow if and only if
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min{C eINa−1:Na
τa−window, C

eINa:Na
τa−window} < B(Ma−2:Ma)

a .

In other words, auctions in the Awindow are those in which the first- or the second-highest

bidder submitted cutoff prices greater than the third-highest bid no earlier than window (time)

before the auction ends. Since lim
window→0

Pr(τ∗ ≤ τa −window) = 1,

lim
window→0

Pr(B
(Ma−2:Ma)
a = V

(Na−2:Na)
a | a ∈ Awindow) = 1; i.e., as window goes to zero,

B
(Ma−2:Ma)
a = V

(Na−2:Na)
a in every auction a in the set Awindow. In any auction t, B

(Mt−1:Mt)
t =

V
(Nt−1:Nt)
t .

Consider the following assumption:

Assumption 1:

Pr(V (Na−1:Na)
a ≤ v2|V (Na−2:Na)

a = v3, a ∈ Awindow)

= Pr(V (Na−1:Na)
a ≤ v2|V (Na−2:Na)

a = v3) ∀ window

Under Assumption 1, the distribution of the second-highest valuation conditional on the

third-highest valuation is identified from: (a) the second- and third-highest bids; and (b) the first-

and second-highest bidders’ cutoff price submission times. Assumption 1 is required because the

sample selection problem may arise if one uses only that part of a dataset chosen on the basis of

cutoff submission times. For example, if a highly-valued bidder is apt to bid late, data from only

auctions in which bids are made late will be different from data from all auctions. If the number

of monitoring opportunities, ei, is one for all i, Assumption 1 is satisfied if the bid submission

time and bid amount are independent. If ei > 1, it is not clear what assumptions on model

primitives and equilibrium selection ensure Assumption 1.16 By applying Lemma 1, I find the

following.

Theorem 2 Under Assumption 1.1, F (·) is identified from the following observables:

(a) The second- and third-highest bids

(b) The first- and second-highest bidders’ cutoff price submission times.

It is necessary at least to compare descriptive statistics across auction sets with different

window to see if there are fundamental differences. In my dataset, this does not appear to be
16Multiple bidding complicates the analysis. Not only the bid submission time and final bid amount but also

the intermediate bid amount is critical.
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a problem as I shall demonstrate later. The above theorem shows that potential bidders’ value

distribution is identified from the data available in eBay auctions. The idea behind the above

identification result also suggests an estimation strategy: I will use data from auctions where

the first- or the second-highest bidder submitted a cutoff price greater than the third-highest

valuation late in the auction. An econometric method to decide "how late" is appropriate is

proposed in the following section.

5 Estimation of the Distribution of Valuations

For a consistent estimate of F (·), I employ the semi-nonparametric (SNP) method developed
by Gallant and his coauthors.17 They showed that simply replacing the unknown density with

a Hermite series and applying the standard, finite dimensional maximum likelihood methods

yields consistent estimators of model parameters, if there are any, and nearly all aspects of the

unknown density itself, provided that the length of the series increases with the sample size.

The rule for increasing series length can be data-dependent.

Since my estimation technique requires knowledge of the second- and third-highest bids

in each auction, I consider only auctions in which observed bidders are no fewer than three for

estimation of F (·). Let (Yt,Xt) denote the second- and third-highest bids, including the shipping

and handling charges at auctions t = 1, 2, ..., T . Let c = mint xt. Since no information about

F (v) for v < c can be discovered from this dataset, I treat F ∗(·) = F (·|c) as the model primitive
of interest. An associated density is denoted by f∗(·). If a starting price set by a seller is below
v with positive probability, c is a consistent estimate of v; in that case, a consistent estimate of

F ∗(·) is a consistent estimate of F (·).18
The density of Yt conditional on Xt, p

∗(yt|Xt = xt), is calculated by substituting 3 for k2,

and 2 for k1 in Equation (4):

p∗(yt|Xt = xt) =
2[1− F ∗(yt)]f∗(yt)
[1− F ∗(xt)]2

for yt ≥ xt ≥ c.

17See Gallant and Nychka (1987), Fenton and Gallant (1996a,b), and Coppejans and Gallant (2002).
18 In practice, the property of c is not important unless c is far above v. For most economic issues, including

three issues analyzed in my application, F ∗(·) is sufficient.
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Hence, I consider the following sample likelihood function:

LT ( bf) = 1

T

TX
t=1

ln
2[1− bF (yt)] bf(yt)
[1− bF (xt)]2 ( bF (x) = Z x

c

bf(t)dt ).
I consider a partial likelihood which is the sample counterpart of p∗(yt|Xt = xt), because

the full likelihood which is joint density of (Yt,Xt) includes the unknown number of potential

bidders. The proof of Lemma 1 implies that p∗(y|x) characterizes F ∗(v), when the lower limit
of the support of F ∗(v) is known. By construction, c is the lower limit of the support of F ∗(v),

so my partial likelihood is uniquely maximized at bF (v) = F ∗(v).

I use the following specification of bf(x):
bf(x) = [1 + a1(

x−µ
σ ) + ...+ ak(

x−µ
σ )k]2φ(x;µ, σ, c)R∞

c [1 + a1(
x−µ
σ ) + ...+ ak(

x−µ
σ )k]2φ(x;µ, σ, c)dx

where φ(x;µ, σ, c) is the density of N(µ, σ) truncated at c. An estimator, cfT , is the maximizer
of LT ( bf). So, cfT (x) = [1 + ba1(x−bµbσ ) + ...+ bak(x−bµbσ )k]2φ(x; bµ, bσ, c)R∞

c [1 + ba1(x−bµbσ ) + ...+ bak(x−bµbσ )k]2φ(x; bµ, bσ, c)dx
such that

( ba1, ..., bak, bµ, bσ) = argmax
a1,..., ak,µ∈R, σ>0

LT ( bf) = 1

T

TX
t=1

ln
2[1− bF (yt)] bf(yt)
[1− bF (xt)]2 .

I choose the optimal series length, k∗, following the method proposed in Coppejans and

Gallant (2002). They consider a cross-validation strategy, which employs the ISE [Integrated

Squared Error] criteria. When bh(x) is a density estimate of h(x), the ISE criterion is defined as
follows:

ISE(bh) =

Z bh2(x)dx− 2Z bh(x) h(x)dx+ Z h2(x)dx

= M(1) − 2M(2) +M(3).

First, I randomly partition a dataset under consideration into J groups, denoted by χj , j =

1, ..., J, making the sizes of these groups as close to equal as possible. Let bfj,k(·) denote the SNP
estimate obtained from the sample points that remain after deletion of the jth group when k is

used as a series length. The cumulative distribution associated with bfj,k(·) is denoted by bFj,k(·).
18



Adjustment of the Coppejans and Gallant (2002) estimators to my case gives the following

estimators:

cM(1)(k) =
1

s

JX
j=1

R
[ bp∗j,k(y|x) ]2dydx (6)

=
1

s

JX
j=1

Z
{2[1−

bFj,k(y)] bfj,k(y)
[1− bFj,k(x)]2 } 2 dydx,

cM(2)(k) =
1

s

JX
j=1

X
(xt,yt)∈χj

bp∗j,k(yt|xt)
=

1

s

JX
j=1

X
(xt,yt)∈χj

2[1− bFj,k(yt)] bfj,k(yt)
[1− bFj,k(xt)]2

where s is the sample size of a considered dataset. Let CVH(k) = cM(1)(k) − 2cM(2)(k). Since

M(3) does not depend on k, M(3) does not need to be considered here. In a typical graph of

CVH(k) versus k, CVH(k) falls as k increases when k is small, periodically drops abruptly,

and flattens right after the final abrupt drop. Coppejans and Gallant (2002) recommend use of

the final abrupt drop point in the graph of CVH(k) versus k as the series length, k∗. For my

estimation, I will use J of ten.

Finally, I propose a method for the selection of an auction set to be used in estimation of

F ∗(·): a method for how to choose the size of window. The choice of window has a similar

trade-off to the one that occurred in the bandwidth selection of the Kernel density estimation.

Two properties of the set of auction Awindow are important to make this clear. First, Pr(a ∈
A∗(τ∗)|a ∈ Awindow) is decreasing in window; as window decreases, it is more likely that the

third-highest bid equals the third-highest valuation. Second, Pr(a ∈ Awindow) is increasing

in window; as window decreases, the number of available auctions becomes smaller. Both

properties are straightforward to show, given the fact that min{C eINa−1:Na
t , C

eINa:Na
t } is increasing

in t. The first property of Awindow implies that as window decreases, an estimate obtained

by using data from auctions in Awindow would be less biased. On the other hand, the second

property implies that as window decreases, an estimate would have greater variance. I construct

a method for choosing the optimal window which clearly considers this trade-off by applying the

same cross-validation strategy that is used for the choice of series length. Detailed procedures

follow.
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I consider a sequence of auction sets, Aw1 ⊃ Aw2 ⊃ ... ⊃ AwI , classified by the later one

between the times at which the first- and second-highest bidders submitted cutoff prices greater

than the third-highest bid. For example, a sequence of auction sets can be constructed in the

following way: Aw1 is a set of all auctions; w2 =2 days (in other words, Aw2 is a set of auctions in

which the highest or second-highest bidder submits a cutoff price greater than the third-highest

bid no earlier than 2 days before an auction ends.),..., and wI =10 seconds.19 Clearly AwI will

have the least number of incorrect, third-highest valuations. For each auction set Awi , I compute

CVHwi(k
∗) using data from auctions in Awi in the same way it is computed in the choice of

the optimal series length, except that I use of the following new cM(2)(k
∗), instead of that in

Equation (6):

cM(2)(k
∗) =

1

s2

JX
j=1

X
(xt,yt)∈χj∩AwI

bpj,k∗(yt|xt)
=

1

s2

JX
j=1

X
(xt,yt)∈χj∩AwI

2[1− bFj,k∗(yt)] bfj,k∗(yt)
[1− bFj,k∗(xt)]2

where s2 is the size of AwI . Note that bpj,k∗(·|·) is evaluated only at sample points in AwI ;

therefore, CVHwi measures how well the estimate obtained by using data from an auction set

Awi fits the data from auctions in AwI . Although I postpone theoretical justification of the above

method for future work, my use of it here is based on the standard cross-validation strategy.

An obvious complementary method to CVHwi comparison is examining descriptive statistics

regarding the third-highest bids among Awi
. For example, suppose that there is i0 such that the

distribution of the third-highest bids does not change much among Awi for i ≥ i0. Then the bias

caused by the third-highest bids being smaller than the third-highest valuations also cannot be

critical among Awi for i ≥ i0. It is not clear, however, when two distributions are not much

different from each other.
19 I do not suggest a general way of choosing w1, ..., wI . In my application, a sequence of auction sets is con-

structed such that size differences between successive sets are similar.
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6 Monte Carlo Experiments

To illustrate the performance of my estimation method, I conduct two sets of Monte Carlo

experiments. The first set of experiments is a benchmark. It illustrates the performance when

the true second- and third-highest order statistics are available. The second set of experiments

simulates eBay auction environments. A potential bidder monitors an auction at a randomly

generated time to make a bid according to eBay rules. The simulated data set may have third-

highest bids that are lower than the true third-highest bidders’ valuations.

6.1 Benchmark Experiments

For each experiment, artificial data of 600 auctions are generated.20 The number of potential

bidders, Nt (t = 1, ..., 600), was first drawn from a Binomial distribution with trial number 50

and success probability 0.1. Nt potential bidders’ valuations were then generated according to

the equation:

lnV i
t = α1SR1t + α2SR2t + νit (7)

where α1 = 1, α2 = −1, SR1t v N(0, 1), SR2t v Exp(1), and νit v f(·) = Gamma(9, 3). For the

sake of reference, E(νit) = 3, and V ar(ν
i
t) = 1. The variables SR1t and SR2t represent observable

item characteristics, and νit is bidder i’s private information, the distribution of which is to be

estimated.

To reflect the fact that not all potential bidders make bids, reserve prices, Rt, were set as

follows:

lnRt = α1SR1t + α2SR2t + ωt

where ωt = Yt − 2, Yt v Gamma(9, 3). Both Yt and νit follow the same distribution, but they

are independent. Since both V i
t and Rt depend on SR1t and SR2t, V i

t and Rt are positively

correlated, but independent conditional on SR1t and SR2t. Actual bidders’ bids are those V i
t

greater than Rt. Each experiment works as if the researcher does not know the presence of

potential bidders with valuations below Rt. Thus, the distribution of observed bids biased

upward relative to that of V i
t , and the number of observed bidders is smaller than the number

of potential bidders.

20Six hundred may seem like a large number. I do not use data from all 600 auctions, as will become clear later

on. Moreover, a benefit of using eBay auction data is that many observations are available.
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In each experiment, a dataset consists of SR1t, SR2t, and the second- and third-highest

among actual bidders’ bids. I do not use the highest bidder’s bid. Auctions with fewer than

three actual bidders are dropped. Hence, the number of the auctions used for estimation is

less than 600, actually 412, on average, across 100 repetitions. I estimate α1, α2, and f(·) by
varying the series lengths of the SNP estimator, k from 0 to 8. A researcher does not make

a parametric distributional assumption on νit, though the specification in (7) is assumed to be

known. In principle, the functional form of the effects of item characteristics is also identified

up to location (Athey and Haile, 2002), but its estimation requires a huge data set.

Table 1 documents the averages of various statistics for 100 repetitions. The Best SNP means

the SNP estimate obtained by using the series length that minimizes a true ISE between 0 and

8 in each experiment. It would be ideal to obtain the performance of the SNP estimates by

using the value of k∗ chosen through the method described in the estimation section. But this

would take a great deal of time, and furthermore, as Table 1.1 shows, the SNP estimates are

robust in terms of the choice of k in this simulation.

Table 1: Benchmark Experiment Results
\E(νit)

\STD(νit) cα1 cα2 \SE(cα1) \SE(cα2)
True 3 1 1 -1

Best SNP 3.057 1.021 1.015 -1.003 .091 .047

k = 0 2.950 1.058 1.015 -1.002 .101 .052

k = 1 2.989 1.040 1.014 -1.002 .100 .051

k = 2 3.081 1.013 1.015 -1.004 .091 .047

k = 3 3.115 1.007 1.016 -1.010 .090 .047

k = 4 3.027 1.014 1.012 -1.014 .088 .046

k = 5 3.099 1.000 1.018 -1.012 .081 .042

k = 6 3.057 1.009 1.010 -1.007 .075 .038

k = 7 3.078 1.001 1.067 -1.005 .068 .034

k = 8 3.054 1.003 1.009 -.996 .061 .031

• SE(cα1), SE(cα2) : BHHH estimators.
The results in Table 1 show that the estimators perform very well. I calculate the estimates

of E(νit) and STD(νit) to examine the performance of the estimates of f(·). Figure 1a-1c in
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Appendix D shows the estimate of f(·) and the density estimates of V i
t evaluated at the median

of (SR1, SR2), along with the corresponding true densities. The graphs also illustrates that the

estimators perform very well. The explanation of how to draw Figure 1a-1c is given in Appendix

D.

6.2 Experiments under eBay Circumstances

For each experiment, artificial data of 1,200 auctions are generated. The item characteristics

SR1t and SR2t are first generated such that SR1t v N(0, 1), and SR2t v [Exp(2) − 1] (t =
1, ..., 1200). The number of potential bidders, Nt, was then drawn from B(30, p) where p =

0.2 ·Φ(SR1t) +0.1. Φ is the cumulative distribution function of the standard normal. Thus, the
distribution of Nt varies, auction by auction. Each potential bidder draws a bidding time, T i

t

from U [0, 100], which represents the remaining auction time. Also, each potential bidder obtains

V i
t according to the following equation:

lnV i
t = α1SR1t + α2SR2t + νit

where α1 = 1, α2 = −1, and νit ∼ f(·) = Gamma(9, 3). Each potential bidder i monitors the

auction at time T i
t and submits a bid equal to V

i
t , if the standing price is less than V

i
t . A standing

price is zero until two bidders submit bids, and it is raised to the second-highest existing bid

when a new bid is submitted. With the introduction of a random bidding time, it happens

that the third-highest bidder does not submit a bid when the first two highest bidders’ bidding

times are earlier than the third-highest bidder’s time. Furthermore, if a lower—than-third-highest

bidder’s bidding time is the earliest, as in the example in Section 4.2, the third-highest bid is not

the third-highest bidder’s valuation. The third-highest bid can be the third-highest valuation,

the fourth-highest one, and so on.

A dataset in each experiment includes SR1t, SR2t, the second- and third-highest among

actual bidders’ bids, and the highest and second-highest bidders’ bidding times. I consider four

subsets of the artificial dataset: (1) one including all auction data; (2) one including data from

auctions in which the highest or the second-highest bidder’s bidding time is no earlier than 50

(time) before an auction ends; (3) no earlier than 25 (time) before the end; and (4) no earlier

than 10 (time) before the end. The SNP estimates of α1, α2, and f(·) are obtained in the same
way as in the previous simulation, by using each subset of the dataset. I replicate the described
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experiment 50 times. Table 2 documents the averages of various statistics obtained through

application of the series length that minimizes a true ISE.

Table 2: eBay Experiment Results

# of obs Wrong third * \E(νit) \STD(νit)

True 3 1

(1) All 979 26.03% 3.281 1.057

(2) 50** 785 19.23% 3.176 1.054

(3) 25 467 10.48% 3.066 1.039

(4) 10 204 4.44% 2.999 1.011

cα1 cα2 \SE1(cα1) \SE1(cα2) \SE2(cα1) \SE2(cα2)
True 1 -1

(1) All 1.144 -.997 .049 .024 .049 .024

(2) 50 1.055 -.995 .062 .029 .062 .030

(3) 25 1.055 -.999 .095 .044 .094 .045

(4) 10 1.006 -1.018 .158 .075 .162 .082

* Percentage of third-highest bids that are not third-highest valuations

• SE1(cα1), SE1(cα2) : Estimated standard error computed by evaluating the Hessian matrix.
• SE2(cα1), SE2(cα2) : BHHH estimators.
Table 2 shows that the estimates obtained by using dataset (3) and (4) are very close to

the true value even if dataset (3) and (4) have 4.44% and 10.48% inaccurate third-highest

valuations. The simulation results demonstrate the trade-off between a less biased dataset and

a large dataset. For example, as a less biased dataset is used, the bias of cα1 becomes smaller,
but its standard error becomes larger. Although the change in the biases of cα2 moves in an
ambiguous direction, the standard error of cα2 becomes larger as a less biased dataset is used,
because of the decrease in the sample size. Figure 2a-2d in Appendix E shows the performance

of estimates obtained using dataset (1)-(4). When the estimates which accomplish median

performance are compared, as expected, estimates obtained by using dataset (4) are closest to

the true. Explanation of how to produce Figure 2a-2d is provided in Appendix E.
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7 Application to eBay University Yearbook Auctions

7.1 Data

I illustrate my method using data from auctions of university yearbooks from the years 1930-

1997 held on eBay from November 17, 2001 to November 16, 2002. The university yearbook

auction was chosen as an application because I want to illustrate my method using data from

auctions that match my maintained assumptions as closely as possible. The university yearbook

is an item hardly traded except in eBay auctions. In most auction models as well as in my

bidding model in Section 3, a bidder does not have an outside option, the choice of buying the

same item from other markets. Therefore, items transacted seldom outside of eBay suit the

model best. Furthermore, the items transacted mainly through eBay are particularly interesting

because their demand structure can be recovered only through analysis of eBay auction data.

I did a small number of surveys to ask winners why they bought or would buy a yearbook.

The winners bought yearbooks as presents for their relatives, to donate to libraries, out of interest

in a particular region or time period, etc. Some bought yearbooks to obtain celebrities’ pictures.

Since yearbooks containing celebrities’ pictures may have a common value element, and their

item heterogeneity is difficult to control for with observables, I excluded all auctions in which

a seller advertised a particular person’s picture, whether or not the advertised person actually

seemed famous. Given the thin market of university yearbooks, resale opportunity cannot be an

incentive for buying unless the books feature celebrities. Thus the IPV assumption is plausible

in this market.

In Appendix F, Table 3 provides the summary statistics of all auctions, and Table 4 gives

more detailed summary statistics of auctions in which there were more than two active bidders.

7.2 Estimation Results

I calculated descriptive statistics regarding various auction/item characteristics (year, the pres-

ence or absence of advertising imagery, and payment methods) to see if those characteristics

have effects on bidders’ valuations. The descriptive statistics given in Appendix G suggest that

none of these characteristics affect bidders’ valuations. Motivated by this observation, I consider
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the following specification of a bidder’s valuation21:

lnV i
t = α1SR1t + α2SR2t + νit

where SR1t is the number of seller’s positive ratings at auction t, and SR2t is (the number of

seller’s neutral and negative ratings) / ( SR1t +1).

I consider six sets of auctions: (1) all auctions in the dataset; (2) auctions in which the

highest or second-highest bidder submits a bid greater than the third-highest bid no earlier than

2 days before an auction ends; (3) no earlier than 12 hours before the end; (4) no earlier than 2

hours before the end; (5) no earlier than 5 minutes before the end; and (6) no earlier than 10

seconds before the end. Descriptive statistics about the second- and third-highest bids in each

set are given in Table 5.

Table 5: Descriptive Statistics

All 2 Days 12 Hours 2 Hours 5 Minutes 10 Seconds

# of obs 915 806 685 503 338 162

2nd- Mean $31.71 $31.82 $32.00 $32.19 $31.92 $31.33

highest Median $25.50 $25.23 $25.12 $25.46 $26.03 $27.33

bid Std $25.26 $26.23 $26.91 $28.65 $23.52 $15.86

Min $4.87 $4.87 $4.87 $4.87 $5.50 $6.99

Max $304.23 $304.23 $304.23 $304.23 $247.00 $92.23

3rd- Mean $21.82 $22.11 $22.58 $23.40 $23.67 $22.26

highest Median $17.61 $18.12 $18.68 $19.07 $19.26 $19.38

bid Std $15.59 $16.07 $16.40 $17.55 $16.53 $11.47

Min $3.76 $3.76 $3.76 $3.76 $5.22 $5.22

Max $152.54 $152.54 $152.54 $152.54 $140.00 $73.00

Table 5 documents that the patterns of second-highest bids, which are supposed to be the

same among auction sets, appear to be very similar across the six auction sets. The difference in

the standard deviations between 5 minute set and 10 second set is relatively large. However, if

21As I mentioned in the section that presents Monte Carlo experiments, although I consider a particular func-

tional form here, the functional form of auction characteristics is also identified up to location.
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they are compared after excluding outliers, the difference is small.22 The medians of the third-

highest bids show a very gentle increasing trend, but neither mean nor median is significantly

different within any pair of sets. Estimation results in each set are as follows:

Table 6: Estimation Results

k∗ \E(V ) \STD(V ) cα1 cα2
(1) All 2 $25.85 $70.00 .00 (.00005) .95 (4.029)

(2) 2 Days 2 $24.71 $51.14 .00 (.00005) -3.48 (6.646)

(3) 12 hours 2 $22.63 $61.54 .00 (.00005) -25.18 (11.590)

(4) 2 hours 2 $21.17 $39.92 .00 (.00006) -15.31 (15.203)

(5) 5 minutes 0 $19.97 $18.85 .00 (0.00009) -14.13 (13.266)

(6) 10 seconds 0 $23.95 $20.99 .00 (0.00008) -19.540 (13.350)

* \E(V ) and \STD(V ) are computed at SR1t = 633 and SR2t = .0032, which are median

values.

Applying the method described in the previous section, I chose the fourth dataset (2 hours).

Figure 3 in Appendix H illustrates the density estimate of νit and the density estimate of bidders’

valuations conditional on SR1t = 633 and SR2t = .0032.

7.3 Issues on Economic Variables

7.3.1 The Effects of Auction/Item Characteristics on Valuations: Sellers’ Ratings

Often one is interested in the effects of auction/item characteristics on potential bidders’ value

distribution. In eBay auctions, the effects of sellers’ ratings on valuations have attracted a

great deal of attention.23 eBay encourages buyers and sellers to rate each other at the close

of a transaction. They can give positive, neutral or negative ratings and comments, which are

publicly available to every eBay customer. Thus, a natural question is whether or not sellers’

ratings can affect bidders’ valuations of auctioned items. Although some prior research shows a

relationship between transaction prices and sellers’ ratings, there is none showing a relationship

22When the lower and upper 1% is excluded, the standard deviations are 17.26 and 15.09.
23See Cabral and Hortaçsu (2003), Houser and Wooders (2001), Resnick and Zeckhauser (2002), Resnick,

Zeckhauser, Swanson, and Lockwood (2002), etc.
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between bidders’ latent value distribution and sellers’ ratings; exploring this matter is possible

only through structural estimation. A seller has options to control trade-off between a sale price

and the probability of sale. For example, if a seller has set a higher starting price, she can extract

a higher sale price at the expense of a lower probability of sale. It would be misleading if we

were to interpret the relationship between transaction prices and sellers’ ratings as a relationship

between bidders’ valuations and ratings.

The results, in particularcα1 andcα2, in Table 6 imply that sellers’ positive ratings do not affect
bidders’ valuations. Although the ratio of nonpositive to positive ratings has a negative effect on

bidders’ valuations, the negative effect is not statistically significant. The results of prior studies

exploring the relationship between transaction prices and sellers’ ratings are slightly mixed, but

most models show a significant effect of negative ratings reducing transaction price, and a trend

toward a positive effect of positive ratings on transaction price (Resnick and Zeckhauser, 2002).

However, even when the effect of negative ratings is statistically significant, typically the effect is

small. Furthermore, Resnick and Zeckhauser (2002) show that more positive ratings and fewer

negatives and neutrals do appear to affect the probability of sale. Accordingly, a significant

effect of negative ratings on transaction prices does not necessarily mean a significant effect on

bidders’ valuations.

7.3.2 Consumers’ Surplus

A consumer’s surplus at an auction t is

CSt = v
(nt:nt)
t − pt

where pt denotes the price that a buyer actually paid, including the shipping and handling

charges. Since v(nt:nt)t is not observed, I estimate an expected consumer’s surplus as follows:

E[CSt|V (Nt−1:Nt)
t = v

(nt−1:nt)
t ] =

Z ∞

v
(nt−1:nt)
t

f(x)

1− F (v
(nt−1:nt)
t )

· x dx − pt .

The descriptive statistics of the estimate of the expected consumer’s surplus at each auction

are as follows. The estimate of the sum of consumer’s surplus (923 auctions) is $33435.41 with

standard error of $660.
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Mean Std Median Min Max

$36.26 $34.07 $25.54 $9.88 $306.28

This estimate of consumers’ surplus may indicate how much eBay customers can benefit

from an introduction to the eBay auction site, because yearbook auctions are seldom transacted

outside of eBay. However, there are possible sources of bias; consumers’ surplus underestimates

the benefit because it ignores suppliers’ surplus, and it overestimates because it ignores bidders’

entry costs, if any.

7.3.3 Examination of Increasing Virtual Valuation Assumption

The virtual valuation, v − [1 − F (v)]/f(v), is often assumed to be an increasing function of

v in the mechanism design literature, e.g., Myerson (1981). This paper examines whether this

assumption is satisfied in the university yearbook market. In Figure 4 in Appendix I, I present

the graph of bf(v) and v− [1− bF (v)]/ bf(v), conditional on the median of (SR1t, SR2t). The graph
shows that virtual values increase where the density is greater than zero.

8 Concluding Remarks

In this paper, I develop and apply new methods for analyzing auctions in which the number

of potential bidders is unknown. This research was motivated by Internet auctions, but is

certainly useful for analysis of other ascending auctions as well. Furthermore, the method in

this paper is extended to a first-price auction model, although we need to clarify assumptions

concerning potential bidders’ participation decisions. Song(2004) shows that the highest and

second-highest bids per auction nonparametrically identify potential bidders’ value distribution

with an uncertain number of bidders within the symmetric IPV framework. Again, unlike

previous studies, a researcher does not need to know the number of potential bidders.

A few open questions related to interpreting online bidding data exist: First, similar items

are often sold side-by-side in Internet auctions, and many auctioned objects are easily available

outside online auction markets. My application, university yearbooks, does not have these

characteristics; however, a substantial number of online auction items do. If bidders consider
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participating in more than one eBay auction featuring the same item and consider buying outside

of eBay auctions, their behavior would probably be different.

Second, a seller has a number of options when she lists her object for an eBay auction. In

this paper, I regard sellers’ choices as exogenous. It would be an interesting extension to set up

a model of sellers’ behavior and estimate it.
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Appendix

Appendix A: Identification from the Lowest Two Bids

Let i = k1 and j = k2 where 1 ≤ k1 < k2 ≤ n, for notational convenience, and let F (·|r) =
F (x)
F (r) and f(·|r) = f(x)

F (r) .

From equations (1) and (2),

p(k1,k2)(x|y) =


(k2−1)!
(k1−1)!(k2−k1−1)!

F (x)k1−1[F (y)−F (x)]k2−k1−1f(x)
F (y)k2−1 , y = x

0, otherwise

where y : k2th order statistic, x : k1th order statistic.

For x ≤ y,

p(k1,k2)(x|y) =
(k2 − 1)!

(k1 − 1)!(k2 − k1 − 1)! ×
[F (y)F (x|y)]k1−1[F (y)(1− F (y|r))]k2−k1−1F (y)f(x|y)

F (y)k2−1

=
(k2 − 1)!

(k1 − 1)!(k2 − k1 − 1)!F (x|y)
k1−1[1− F (x|y)]k2−k1−1f(x|y)

=
(k2 − 1)!

(k1 − 1)!(k2 − 1− k1)!
F (x|y)k1−1[1− F (x|y)]k2−1−k1f(x|y)

= f (k1:k2−1)(x|y).

Appendix B: Identification of the Distribution of the Number of Potential Bidders

A random variable, Yt, represents the second-highest bid. In contrast to my use of only

auctions in which Mt ≥ 3 for identification of F (·), I here include auctions in which Mt < 3 as

well. If Mt ≤ 1, Yt = 0. Let pi = Pr(Nt = i) where i = 1, ..., l, and G(y) denote the cumulative

distribution of Yt. I start with the case in which starting prices are not binding and Appendix C

below discusses the case in which there is a binding starting price. Applying Equation (3) and
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rearranging terms lead to:

G(y) = p0 + p1 +
lX

i=2

piF
(i−1:i)(y) (8)

= p0 + p1 +
lX

i=2

pi[iF (y)
i−1 − (i− 1)F (y)i]

= p0 + p1 + 2p2F (y) + (3p3 − p2)F (y)
2 +

· · · · · ·+ [lpl − (l − 2)pl−1]F (y)l−1 − (l − 1)plF (y)l.

Even if a starting price is not binding, generally Nt 6=Mt, because a standing price is raised

to the second-highest cutoff price as an auction proceeds. However, Nt = Mt when Mt ≤ 1;
therefore, the identification of p0 and p1 is obvious. The previous section proves identification

of F (·), and G(·) is observed. Hence the coefficients of F (y), F (y)2, ..., F (y)l in Equation (8) are
identified; this implies identification of {pi}li=2.

Binding Starting Prices

If a seller sets a binding starting price, s > v, no auctions can reveal information about F (v)

for v < s or potential bidders with valuations below s. However, the previous identification

results extend to identify the truncated distribution, F (·|s) = F (·)−F (s)
1−F (s) and distribution of N 0

t

where N 0
t represents the number of potential bidders with valuations above s.

Corollary 2 Suppose we observe a pair of order statistics from an arbitrary absolutely contin-

uous distribution F (·), where each order statistic is greater than s. Then F (v|s) = F (v)−F (s)
1−F (s) is

identified where v ≥ s.

Proof. The order statistics are observed on the condition that they are greater than s. So

the (joint) distribution of the observed order statistics is equal to the (joint) distribution of order

statistics from F (v|s). The result is then immediate by applying Lemma 1.
The identification of the distribution of N 0

t is easily established from the previous section

result. Let qi = Pr(N 0
t = i) and Yt = s if N 0

t ≤ 1. Equation (8) is still satisfied with qi

substituted for pi and with F (y|s) substituted for F (y). So the result follows.
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Appendix C: Graph of Benchmark Monte Carlo Experiments

The 100 Best SNP are obtained through application of the series length that minimizes a

true ISE in each experiment. Figure 1a presents the graph of the density estimate of which

true ISE is the smallest among 100 Best SNP estimates. Figure 1b graphs the density estimate

of which the true ISE is the 50th. Finally, Figure 1c graphs the density estimate of which

the true ISE is the biggest. Throughout these three figures, the left graph presents a density

estimate of f(·), and the right graph presents a density estimate of V i
t conditional on the median

of (SR1, SR2). It is important to remember that potential bidders’ valuations were generated

according to the equation:

lnV i
t = α1SR1t + α2SR2t + νit (7)

where α1 = 1, α2 = −1, SR1t v N(0, 1), SR2t v Exp(1), and νit v f(·) = Gamma(9, 3). The

solid line represents the true density, and the dotted line represents an estimate.

Figure 1a: The Best Performance
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Figure 1b: The Median Performance

Figure 1c: The Worst Performance
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Appendix D: Graph of Monte Carlo Experiments under eBay Circumstances

The 50 (experiments) × 4 (subsets) Best SNP are computed in the same way as in the

benchmark Monte Carlo Experiments. Each figure below presents the graph of the density

estimate of which the true ISE is the 25th among 50. As before, the left graph presents a

density estimate of f(·), and the right graph presents a density estimate of V i
t conditional on the

median of (SR1, SR2). The solid line represents the true density, and the dotted line represents

an estimate.

Figure 2a: Using simulated data from auctions in which the highest or the second-highest

bidder’s bidding time is no earlier than 10 (time) before an auction ends
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Figure 2b: No earlier than 25 (time) before the end

Figure 2c: No earlier than 50 (time) before the end
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Figure 2d: Using simulated data from all auctions

Appendix E: Descriptive Statistics

Table 3 presents summary statistics on the dataset that includes all auctions: averages and

standard deviations in parentheses. While no auctions in which sellers advertise yearbooks on

the basis of any particular person are used for estimation of bidders’ value distribution, the

summary statistics below are for the dataset including some auctions in which a seller advertises

a particular person. Actually, I first dropped only auctions in which sellers advertise "famous"

persons (i.e., I did not exclude auctions of which sellers advertise persons, who did not seem

to be famous), and later on I dropped any auctions if a seller advertised a particular person in

that auction. I made the second drop only for auctions used for estimation of bidders’ value

distribution, because it would take too long to examine all the auctions in the dataset. Here,

for the sake of comparison, all statistics in Table 3 and 4 are for the dataset before the second

drop.
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Table 3: Summary Statistics of All Auctions: Averages and Standard Deviations

in Parentheses

Sellers’ Ratings Sale

# obs in parentheses Positive Neutral Negative Price

All auctions (14,151) 1176(1587) 5.65(15.04) 3.63(12.19)

All with Sale (6,612) 1130(1485) 5.13(13.62) 3.09(10.43) $14.97(16.49)

Zero Bid (7,496) 1215(1672) 6.10(16.19) 4.09(13.56)

End by "Buy It Now" 975(1016) 3.78(9.20) 2.21(6.41) *

One Bidder (3,494) 1181(1611) 5.51(14.83) 3.41(11.5) $9.54(6.31)

Two Bidders (1,674) 1121(1352) 5.04(11.39) 2.85(8.70) $15.81(14.03)

Over Two (1,160) 1039(1377) 4.59(13.71) 2.79(10.15) $30.13 (27.59)
* "Buy It Now" price does not remain on the auction site after an auction is ended by a

bidder’s use of the "Buy It Now" option. We can know only whether or not an auction is ended

by the "Buy It Now" option.

* The number of auctions ended by a bidder’s use of the "Buy It Now" option is 327.

Table 4: Detailed Descriptive Stat. of Auctions in Which Bidders > 2

Mean Median STD Min Max

Price $30.13 $22.50 $27.59 $1.37 $305

2nd highest bid $29.32 $22.00 $27.16 $1.12 $300

3rd highest bid $18.71 $14.5 $17.31 $.01 $162

Positive ratings 1,039 633 1,377 0 17,865

Neutral ratings 4.59 1 13.71 0 226

Negative ratings 2.79 1 10.15 0 180

Starting price $8.35 $8.99 $4.99 $.01 $39.99

Number of bidders 3.61 3 .99 3 10

Number of bids 5.84 5 3.08 3 26

Number of auction days 7.21 7 1.25 3 10
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Appendix F: Auction Characteristics

I examined descriptive statistics to see if there are auction characteristics (other than sellers’

ratings) which have effects on a bidder’s willingness-to-pay. The descriptive statistics strongly

suggest that none of auction characteristics examined below affect a bidder’s willingness-to-pay.

(1) Year — Plot of ln(the second-highest bids) vs. year of yearbook:
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(2) Picture

— Descriptive statistics of the second-highest bids under two different categories:

With advertising image (834 obs) Without advertising image (89 obs)

Mean $31.82 $30.63

Median $25.49 $25.5

STD $25.47 $23.25

(3) Payment methods

— Descriptive statistics of the second-highest bid under two different categories:

With online payment (724 obs)* Without online payment (199 obs)

Mean $31.93 $30.89

Median $25.50 $25.00

STD $25.43 $24.64

* Auctions in which a seller provides a payment method that enables a bidder to pay online,

such as PayPal, credit card, and so on.
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Appendix G: Graph of the Density Estimate

The left graph presents a density estimate of νit, and the right graph presents a density esti-

mate of V i
t conditional on the median of (SR1t, SR2t). It is useful to recall that the specification

of a bidder’s valuation is:

lnV i
t = α1SR1t + α2SR2t + νit

where SR1t is the number of seller’s positive ratings at auction t, and SR2t is (the number of

seller’s neutral and negative ratings) / ( SR1t +1).

Figure 3
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Appendix H: Examination of an Assumption that the Virtual Value Is an Increasing

Function in the Valuation

The left graph presents a density estimate of V i
t , and the right graph presents (1− bF (v))/ bf(v),

conditional on the median of (SR1t, SR2t).

Figure 4
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