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Abstract

This paper considers the option value arising from sequential schooling decisions made in the pres-

ence of uncertainty and learning about academic ability. College attendance has option value since

enrolled students have the option to continue in school after learning their aptitude and tastes. This paper

is the first to quantify this value using a dynamic structural model, which is estimated with transcript data

from a panel of U.S. youth. Option value is computed through simulated counterfactual scenarios which

alter individuals’ information set. I estimate that option value accounts for 13% of the total value of the

opportunity to attend college for the average high school graduate and is greatest for moderate-ability

students. Students’ ability to make decisions sequentially in response to new information increases wel-

fare and also makes educational outcomes less polarized by background. These findings suggest that

uncertainty and option value are central features of educational investment and should be considered

when estimating the returns to schooling and evaluating education policy.
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I Introduction

Since the pioneering work of Becker and Mincer, the application of investment theory to the study of individ-

uals’ education decisions has become commonplace. People are assumed to weigh short-term costs against

future benefits and choose the schooling level that maximizes welfare. This static framework abstracts from

uncertainty and suggests that few people should drop out if the marginal earnings gain from graduating is

high, as it appears to be. In reality, schooling decisions involve much uncertainty, outcomes often deviate

from expectations, and dropout is common.1 Despite its salience and its importance to investment generally,

uncertainty has historically received relatively little attention in the study of education.2

This paper examines the consequences of educational uncertainty using a structural model in which

schooling decisions are sequential and academic ability is learned through grades. Since psychic school-

ing costs depend on ability, people refine their expectations of them over time. This set-up is analogous to

Pindyck’s (1993) model of "technical" cost uncertainty, where the cost of completing a long-term project is

revealed only as investment proceeds. Option value arises in this context since students have the option to

continue in school after learning their aptitude and tastes. My estimates suggest option value is substantial

for the average high school graduate and is greatest for moderate-ability students. Their decisions are partic-

ularly sensitive to new information, so they derive the most value from learning it. The ability to condition

sequential education decisions on new information increases welfare and also makes educational outcomes

less polarized by background.

One implication is that policies that restrict dynamic flexibility curtail welfare most for those closest

to the decision margin. In the context of school tracking, for example, students who are most uncertain

about their fit with the vocational or academic tracks are most affected by forced commitment to a track

ex-ante. The general setup can be used to examine a wide range of phenomenon - job choices, marital

decisions, health investments - in which decisions are sequential, partially irreversible, and responsive to

new information.

This paper quantifies the importance of uncertainty and computes option value through simulations of

a structural dynamic model, which is estimated using postsecondary transcript data on a recent cohort of

1For instance, only 51% of 1982 high school seniors who intended to earn a Bachelor’s degree had done so by 1992, while 16%
of those planning to earn less than a four-year degree eventually did according to the National Center for Educational Statistics,
2004 Digest of Educational Statistics Table 307.

2Uncertainty is at the heart of a burgeoning body of very recent empirical work on schooling, as surveyed in Heckman, Lochner,
and Todd (2006). In the investment literature, most relevant here is the work related to real options collected in Dixit and Pindyck
(1994).
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U.S. men from the National Educational Longitudinal Study (NELS). The model encompasses enrollment

decisions and grade outcomes over four years as well as the decision to start at a two-year (community)

or four-year college. I simulate educational outcomes and welfare using the dynamic model and compare

this to the counterfactual scenario wherein individuals commit to an educational outcome before enrolling

in college. The welfare difference between these two scenarios is the value of the option to respond to the

information received during college.3

I assume that enrollment reveals three pieces of information. The first is collegiate aptitude, which

influences the persistent psychic costs (or benefits) from school attendance. Enrollment provides information

in the form of course grades which are used to predict the future desirability of school. Non-persistent

shocks to the relative cost (or benefit) of schooling are the second. These shocks combine many factors -

getting ill, having a parent lose a job, having a winning football team - that are not expected to persist over

time.4 The final source of uncertainty is about labor market opportunities associated with higher levels of

education. Expected lifetime income increases with education but the specific realization is unknown ex-

ante. Individuals learn of these opportunities only if they actually enroll. Since decisions can be conditioned

on all this information, acquiring it has value.5

Estimates suggest that uncertainty about college completion is empirically important; unanticipated taste

shocks are half as large as the returns to the final year of college and dwarf direct tuition fees at public

colleges. There is also evidence of learning about ability - over time people put increased weight on course

grades in their continuation decisions. Because of this uncertainty, the average high school graduate would

be willing to pay $15,700 (in 1992 dollars) to maintain the ability to decide sequentially, with moderate-

ability students (for whom educational outcomes are most uncertain) willing to pay even more (up to $26,000

in 1992 dollars). Option value accounts for 13% of the total value of the opportunity to attend college

among all high school graduates and 36% for those closer to the enrollment margin. Approximately 60%

of this value comes from the information received in the first year of college. The ability to make decisions

sequentially increases both enrollment and dropout, but also closes a quarter of the welfare gap between

the first-best scenario (individuals maximize welfare ex-post) and the static one (individuals commit to

outcomes ex-ante).

3In order to isolate the value of new information, I adopt Dixit and Pindyck’s (1994) defintion of option value, which nets out
the continuation value that arises even with no uncertainty if returns are nonlinear. Heckman, Lochner, and Todd (2006), Heckman
and Navarro (2007), and Heckman and Urzua (2008) define option value inclusive of this continuation value. See Section IIC.

4Such shocks are common features in the dynamic structural models of Keane and Wolpin (1997) and others.
5For tractability, I also assume risk neutrality so that outcome variance has no direct influence on utility.
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Though most previous treatment of this subject has been theoretical, recent empirical work also under-

scores the importance of schooling uncertainty and option value.6 For instance, Altonji (1993) finds large

differences between mean ex-ante and ex-post returns to starting college and Cunha, Heckman, and Navarro

(2005) conclude that 30% of people would change their schooling decisions if they had perfect information.

Chen (2007) estimates that 80% of potential wage variation reflects uncertainty and this share varies across

education levels. Uncertainty is clearly important empirically.

This paper is in the tradition of the multi-period dynamic structural schooling models exemplified by

Keane and Wolpin (1997), but with two key contributions.7 First, I augment their basic model to include

learning about ability through course grades, similar to Arcidiacono (2004).8 Psychic costs (which depend

on ability) are very important to schooling decisions, but their nature is not well understood.9 Heckman and

Navarro (2007) discuss identification of a general model which permits learning about serially-persistent

attributes (such as psychic costs), but leave estimation for future work. Learning about academic ability is

one source of option value not present in previous empirical work.

Second, I examine the properties and consequences of option value using a fully estimated dynamic

structural model. Heckman, Lochner, and Todd (2006) caution that rates of return to schooling depend on

the empirical importance of option value, yet previous work ignores this. They provide preliminary estimates

of it using a calibrated model with exogenous dropout, concluding that much more work is needed on the

subject.10 This paper uses a simple theoretical model to show how uncertainty creates option value and

influences enrollment decisions, particularly for those at the margin.11 These properties are quantified using

the estimated structural model, in order to examine the empirical importance of option value to educational

attainment, welfare, and policy.12

6Weisbrod (1962) was the first to point out that education has option value. Also see the theoretical work of Comay, Melnick,
and Pollatschek (1973), Dothan and Williams (1981), and Manski (1989).

7Similar approaches are found in Eckstein and Wolpin (1999), Buchinsky and Leslie (2000), Belzil and Hansen (2002), Ar-
cidiacono (2005), and Wiswall (2007). The dynamic model of Cameron and Heckman (2001) is also related.

8Arcidiacono (2004) estimates the returns to various majors after controlling for dynamic selection, using course grades as a
signal of subject-specific unobserved ability. Since he only examines students enrolled in four-year colleges, he does not investigate
the importance of learning or option value to enrollment decisions themselves. A related model of student learning is contained in
Altonji (1993) and Malamud (2008).

9See Heckman, Lochner, and Todd (2006) for a discussion of recent evidence on the importance of psychic costs.
10Work in progress by Heckman and Urzua (2008) is also quantifying option value using an estimated dynamic model of

schooling.
11Greater uncertainty makes enrollment more attractive because current decisions depend on the expected welfare gain from

future schooling. The opportunity to drop out truncates this future welfare gain at zero, so greater variance (uncertainty) increases
its expected value and makes the option to continue in school more valuable.

12Reduced form techniques are inadequate for quantifying option value, but they can be used to explore its importance to
various decisions. For instance, Eide and Waehrer (1998) examine whether students consider the likelihood of graduate school (and
accompanying wage gains) when choosing a college major choice.
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The rest of the paper proceeds as follows. Section II uses a simple two-period model to analyze how

option value arises in the presence of educational uncertainty. This section states the definition of option

value used in this study and discusses several of its properties. Section III presents the full empirical model

and discusses issues related to its estimation. Estimation results are presented in Section IV, which also

includes a discussion of model fit. Section V uses the estimated model to calculate the option value created

by the sequential nature of schooling decisions. Section VI concludes by identifying directions for future

work as well as other applications.

II Modeling Educational Investment

A The college dropout puzzle

The static model of educational investment widely used in the literature is inconsistent with high levels of

college dropout if degree wage effects are large. Consider a simple version of the traditional model first

developed by Becker (1964).13 Individuals are assumed to maximize lifetime utility, which is a function of

lifetime earnings and the (monetary and psychic) cost of schooling,  = ln ()−(), where () is some

increasing and convex function of years of schooling. If () and () are continuous and differentiable,

then the optimal schooling level satisfies the first order condition (
∗
 )


1

(
∗
 )
=

(
∗
 )


. The benefit of an

additional year of schooling (higher earnings) just offsets the additional costs (delayed earnings and psychic

costs) at the optimum.

However, the returns to college appear to be highly non-linear.14 Figure I presents estimates of the

earnings production function for male high school graduates from the National Longitudinal Survey of

Youth 1979 (NLSY79) .15 The present discounted value of lifetime earnings minus tuition jumps discretely

at four years of college, but is unrelated to schooling attainment until then. If psychic schooling costs are

smooth, individuals should bunch at this discontinuity and very few people should fall in the intermediate

ranges. Figure I also plots the distribution of postsecondary schooling attainment for men aged 35, who

13This simple model is discussed in Card (1999).
14There is a substantial literature that documents the existance of nonlinearities in the returns to education. See Hungerford and

Solon (1987), Jaeger and Page (1996), Park (1999), and Heckman, Lochner, and Todd (2006).
15The solid line plots the coefficients from a linear regression of log lifetime earnings (minus tuition) on a set of schooling level

dummies and control variables. The present discounted value of lifetime earnings are computed by summing discounted real annual
income from age 18 to 62, assuming that real income is constant from 38 to 62. Discount rate is assumed to be 5%. By including
several baseline characteristics in the regressions, these estimates only partially address the endogeneity and selection problems
which complicate earnings comparisons by schooling level.
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have presumably all completed their schooling. Consistent with the model, zero (39% of the sample) and

four years (17%) of college are the most frequent schooling outcomes. Ten percent attend college for two

years, which partially reflects Associate’s degree attainment. Contrary to the theory, however, there are

many people whose schooling level puts them on the flat part of the earnings production function. Fully

28% of high school graduates drop out before finishing their fourth year of college. From the perspective

of traditional human capital theory where individuals optimally choose their schooling level to equate the

known marginal costs and benefits of an additional year, these individuals present an unexplained puzzle.

However, dropout can be rationalized when schooling decisions are sequential and the feasibility and

desirability of degree completion is unknown ex-ante. As pointed out by Altonji (1993) and others, uncer-

tainty about the difficulty of graduating can interact with nonlinearities in the ex-post returns to schooling to

create option value. Students with schooling outcomes on the flat part of the earnings curve may therefore

be people for whom option value made enrollment worthwhile, even though the return was negative ex-post.

B A simple dynamic model of college enrollment and completion

Now consider a simple dynamic model with two periods, which correspond to the first and second half of

college.16 Utility is in dollars and individuals are assumed to be risk-neutral. At period one, individuals

decide whether or not to enroll in college. Entering the labor market immediately provides zero utility

but enrollment provides an individual-specific net return to the first half of college (1) which is known

throughout. At period two, those who enrolled decide whether or not to graduate. Dropping out provides

no further utility but graduating provides additional utility of 1 + 2, where 2 is revealed in period

two and [1 2] = 0. Individual-specific returns to the second half of college have a component that

is known when the enrollment decision is being made (1) and one that is only learned after enrollment

(2). This specification allows the returns in each period to be correlated, so first period returns provide

information about the desirability of attending the second period. For expositional simplicity, I normalize

mean returns to zero in each period, [1] = [2] = 0.17 I focus on the case where returns are non-

negatively correlated,  ≥ 0. Figure II illustrates the structure and payoffs of the model.18

16A similar two-period setup was used by Manski (1989), Altonji (1993), Taber (2000), and Arcidiacono (2004).
17The model can easily incorporate nonlinearities in returns by setting [2] =   [1]. Nonlinearities are not necessary

to create option value, but simply highlight option value’s importance in explaining dropout. The model I actually estimate uses the
empirical returns to each year of college, which permit nonlinearities.

18That the labor market is an absorbing state that is inescapable and provides no further information is a crucial feature of the
model, a point I return to later when discussing the full empirical model. A generalization that allows learning while in the labor
market would permit individuals to delay school entry or interrupt attendance.
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First consider the fully static case where individuals make a single schooling decision between the three

schooling outcomes (no enrollment, dropout, complete) at period one. Since they have no knowledge of

2, they set it to its expected value when evaluating the payoffs. The decision rules of individual  are thus:

Static decision rules

  : 1 +max {0 1}  0

  : 1  0

Individuals will enroll and complete if 1  0 and not enroll otherwise. Here the static model predicts no

dropouts; anyone for whom enrollment is desirable will also want to complete college. To see this, note that

payoffs are 0, 1, and 1(1 + ) for non-enrollees, dropouts, and completers, respectively, so completing

college dominates dropping out if   0. The presence of non-linear returns (e.g. [2] =   [1])

will only magnify this result. With negatively correlated returns (  0), the static model predicts that some

people will drop out but all who do will have positive ex-post returns.

Now consider the dynamic case, where individuals only have to make the enrollment decision at period

1. People will enroll if the expected utility from doing so is greater than zero, where expectations are

taken over the distribution of the unknown second-period returns 2. The model is solved starting with the

completion decision in period two, when all parameters are known. The decision rules of individual  are

thus:

Dynamic decision rules

  : 1 +[max{0 1 + 2}]  0

  : 1 + 2  0

The enrollment decision incorporates not only the immediate payoffs (1) but also the expectation of

future ones ([max{0 1 + 2}]).19 Now the enrollment and completion decisions are not completely

19Here I ignore any discounting that occurs between the first and second periods. Assuming a distribution for 2, one can
derive an expression for [max{0 1 + 2}]. For instance, if 2 is drawn from a normal distribution with mean zero and
variance 2, then

[max{0 1 + 2}] = Pr(2  −1) · (1 + [2|2  −1])
where

Pr(2  −1) = Φ
1




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coupled since completion can be conditioned on the realized value of 2. This property has several impli-

cations for the level of enrollment, dropout, and welfare, to which I now turn.

C The option value of college enrollment

A key feature of the dynamic model where dropout is endogenous is that the expected net utility gain from

completing college is truncated at zero. If 2 is sufficiently adverse, then individuals will choose to drop

out rather than assume this adverse shock. By providing information about the desirability of completion,

enrollment thus has value beyond the utility provided in the first period directly. This section defines the

option value created by uncertainty and discusses the implications of option value for educational outcomes

and welfare.

Enrollment is valuable because it leads to outcomes people may want to commit to ex-ante and because

it provides information about the desirability of completion. The value of the opportunity to enroll can be

decomposed into these two parts.

(1) = (1) + (1) (1)

(1) is the value of the opportunity to enroll for individual  (as a function of 1) in the

dynamic setting where individuals can drop out if continuation ends up being undesirable. (1)

is the value of the enrollment opportunity in the static case, where individuals commit to an educational

outcome ex-ante. Define 1 as the critical value above which enrollment is optimal in the dynamic setting

and 1 analogously in the static setting.20

From above we have (1) = max (0 1 +[max{0 1 + 2}]) and (1) =

max (0 1 +max{0  [1 + 2]}). Thus option value can be written as:

 (1) = max (0 1 +[max{0 1 + 2}])| {z }
(1)

(2)

−max (0 1 +max{0  [1 + 2]})| {z }
(1)

and

 [2|2  −1] = 

−1




1−Φ

−1



.

20Here 1 = 0 and 1 solves (1) = 0.
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This definition of option value nets out the continuation value arising from nonlinear returns with no

uncertainty, consistent with Dixit and Pindyck (1994). If completing the first year of college is required

in order to enter the second year, then the first year has continuation value. Continuation value may cause

people with negative first year returns to enroll if second year returns are sufficiently high. However, if

second period returns are uncertain and future decisions can be conditioned on new information, then even

individuals who expect negative returns in both periods ( 1  0) may find it optimal to enroll. In this

paper, I focus on this latter effect. Heckman, Lochner, and Todd (2006), Heckman and Navarro (2007), and

Heckman and Urzua (2008) define option value inclusive of the continuation value, which is appropriate

given their interest in estimating total returns.21 I now examine the properties of this entity.

Proposition 1 (The properties of option value).

a.  (1) is non-negative for all 1.

b.  (1) is greatest for individuals at the enrollment margin in the static model.

c.  (1) is increasing in the level of uncertainty (variance of 2).

d. The critical value 1 is decreasing in the level of uncertainty (variance of 2).

e.  (1) reduces the dependence of educational outcomes on 1.

f. The option to drop out improves welfare.

Proof. Consider three groups of individuals which together span the space of 1. Group A (1  1)

does not enroll under either the static or dynamic settings. Since they do not enroll, they get no value from

the option to drop out. Group C (1  1) enrolls in both the dynamic and static settings. Their option

value equals [max{−1 2}]. This expression is decreasing in 1 and positive since [2|2 

] ≥ [2] = 0 for any value . Group B (1  1  1) enrolls in the dynamic setting but would not

if they were forced to commit to their educational decision ex-ante. For these individuals, the option value

is pivotal to enrollment. This option value is equal to 1 + [max{0 1 + 2}]. In this region, this

expression is positive (by definition of 1) and monotonically increasing in 1. Option value of individuals

21Roughly speaking, this distinction is a matter of how to treat the extent to which the option is "in the money" when it is
granted. In the above notation, Heckman, Lochner, and Todd (2006) would define option value as :
 (1) = max (0 1 +[max{0 1 + 2}])−max (0 1)
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in this group is maximized at the boundary 1 = 1 = 0 where the option value equals [max{0 2}].
This is greater than the option value of any individuals in the other two groups. Properties a and b follow.

For a given level of variance of 2, the truncation point is fixed (at −1 for Group A and 0 for Group

B). Since increased variance increases the truncated conditional expectation of a random variable, property

c follows. Like a financial option, the value of the dropout option increases in the variance of the value of

the underlying asset (2). Property d is a corollary of c: as  (1) increases due to increased

uncertainty about 2, enrollment becomes desirable to more people, reducing the enrollment threshold.

Property e can be seen from the decision rules in the previous section. In the fully static case, educational

outcomes are fully determined by information available in the first period. This in not true when schooling

decisions are sequential. Property f is a corollary of a: since option value is non-negative, it improves

welfare.

Figures III and IV illustrates these features of option value in this context through simulations.22 Figure

III plots the value of the enrollment opportunity for a range of values of 1 and for different levels of un-

certainty about 2. The dotted line is the value of the enrollment opportunity in the static case, (1).

This value is zero for those who choose not to enroll (1  0) and then increases linearly with 1. The

dashed lines plot the value of the enrollment opportunity in the dynamic situation where 2 is uncertain,

(1), for two different levels of uncertainty about 2. The vertical distance between the dashed

and dotted lines represents the  (1). For comparison, the solid line plots the average welfare

in the full information counterfactual scenario where individuals can make education decisions to maxi-

mize welfare ex-post, after learning 2. Figure III confirms that  (1) is increasing in .

In contrast to the standard view that uncertainty reduces welfare if agents are risk averse, here uncertainty

combined with the ability to respond dynamically actually increases welfare by increasing the option value.

As  (1) increases due to increased uncertainty about 2, enrollment becomes desirable to

more people. This can also be seen in Figure III: 1 is where the dashed lines intersect the horizontal axis.

Even without nonlinearities, option value will make enrollment desirable to people for whom the first half

of college is unproductive (1  0). In Figure III, the vertical distance between the solid line and the others

represents the welfare loss resulting from incomplete information about 2. The ability to drop out after

learning 2 (the dashed line) closes much of this welfare gap.

22I take 10,000 random draws of 2 from a normal distribution with mean zero and variance 2 for each value of 1 I also
set  = 1 The figures report the average welfare and schooling outcomes across these 10,000 draws.
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The sources of the welfare gains coming from the ability to drop out can be seen more clearly by

looking at educational outcomes under the various scenarios. Figure IV plots the fraction enrolling in (Panel

A) and completing college (Panel B) under the static, dynamic, and full-information scenarios described

above. Individuals in Group A receive no schooling in either the static or dynamic settings, though some

(with high 2) would enroll and graduate if they knew 2 with certainty. Individuals in Group B are

compelled to enroll despite their negative first period returns because of the informational value. Though

many will eventually drop out, others will graduate and the costs of experimenting are not too high. This

group receives considerably more education in the dynamic setting. Interestingly, a small subset of these

individuals actually continue to graduation due to the sunk-cost nature of their period 1 investment, despite

this being suboptimal ex-post. Group C benefits from the dynamic setting because they have the option to

drop out if continuation is undesirable. In the static model, all commit to graduating, even if it is undesirable

ex-post. Option value increases the welfare of this group by reducing their educational attainment.

D Implications for empirical work

A simple dynamic model of college enrollment and completion was motivated by the failure of the static

model to explain high rates of college dropout. In a dynamic setting, dropout occurs when new information

reveals that continuation is not desirable. The opportunity to drop out in response to this information creates

option value, which was shown to have important consequences for educational outcomes and welfare.

Specifically, option value increases the incentive to enroll, particularly for those at the enrollment margin in

the static model. Any model that ignores this value will necessarily understate the incentive to enroll and

mischaracterize the social desirability of college dropout.

The model above is useful for presenting ideas and intuition, but is too simple to provide useful guidance

about specific policies. The remainder of the paper turns to a much more elaborate version of the dynamic

model, which I then estimate in order to quantify the importance of option value and uncertainty.

III Empirical Implementation

To characterize schooling uncertainty quantitatively, I estimate an empirical model that is a much richer

version of the basic model presented above. The empirical model extends the simple model to include

enrollment decisions and grade outcomes at four time periods and allows individuals to start at either a two-
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year and four-year college. The model includes several sources of uncertainty. Like many dynamic models,

I include unanticipated shocks to the relative desirability of school and labor market entry at each point in

time. For example, receiving an unusually favorable outside job offer or getting ill influences the relative

desirability of schooling and work at a single period. These shocks are assumed to be serially uncorrelated.

The second source of uncertainty is about academic aptitude, which influences taste for schooling through-

out college. Students do not know for certain whether they are a "B" or "C" college student until they enroll.

Grades following enrollment provide a signal of this unobserved ability and students learn about their ap-

titude through their grades. This section presents the key elements of the empirical model and discusses

issues related to its estimation. A complete description of the full model is contained in the appendix.

A Model description

I model schooling decisions in the four academic years after high school graduation. During the first period

individuals decide whether to start at a four-year or two-year college, which I refer to as pathway choice, or

to not enroll in college. The pathway chosen affects the level and timing of direct schooling costs (which

may differ across individuals) and unmodeled college amenities. At each time period  an individual chooses

whether to enter the labor market (receiving payoff ) or continue in school for another year, receiving

payoff  in period  and the option to make an analogous work-school decision in period  + 1, where

 = 2 4 denotes the type of school currently attending. After period two, students that started at a two-year

college must attend a four-year college if they want to continue in school.23 After period four, there are

no more decisions to make and all individuals enter the labor market.24 Figure V depicts the structure of

choices, information, and payoffs in the full empirical model, where the individual subscripts have been

omitted.

Utility is in dollars. The indirect utility from discontinuing school and entering the labor market at period

 equals the expected present discounted value of lifetime income from period  to age 62 () plus

a random component . Note that  subscripts a decision period so it is collinear with years of education

23In the estimation, I do not actually distinguish between people attending two- and four-year schools in their third year. I
simplify by assuming that anyone who started at a two-year school that is enrolled in their third year faces the four-year school cost
structure, even if they are actually enrolled in a two-year school. In future specifications, I will allow timing of transfer to deviate
from the typical two years assumed here.

24The model does not currently permit two-year and four-year colleges to affect earnings differently or allow for heterogeneity
among four-year colleges. Kane and Rouse (1995) find that the return to education received at two- and four-year institutions is
comparable. They estimate that the average college student earned about 5% more than similar high school graduates for every year
of credits completed, regardless of where those credits were earned.
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in this model.

 =  +  (3)

The expected indirect utility derived from attending school during year , , depends linearly on a type-

specific intercept (), expected unknown ability (), direct tuition and commuting costs, and a random

component .  and  vary by the type of school currently attending (2-year or 4-

year), so individuals that start at a two-year school will pay community college tuition for the first two years

then four-year college tuition for their third and fourth years. The random shocks (,

) are revealed to

the individual prior to making the period  decision.

 = 0 +  + []− ( + ) +  (4)

The term [] captures the preference for school (in dollar terms) that covaries with its expected

difficulty.25 Individuals do not know  at any time, so they form expectations of it when making their

period- decisions. I assume that individuals form rational expectations of their performance in school.26

In period one, I make the parametric assumption that the conditional expectation of  on baseline char-

acteristics depends linearly on a type-specific intercept (), high school grade point average (),

percentile score on the AFQT, and whether a parent has a college degree ():

1[] = [|] = 0 +  +  +  +  (5)

At the end of each year, students enrolled in college learn their performance during that year, which is

measured by the college grade point average (on a four-point scale) during period . I assume that grades

provide a noisy signal of :  =  + 

. Grade shocks are assumed to be serially uncorrelated and

normally distributed:  ∼ (0 ). With learning, individuals update their belief about in response to

new information received through grades. I make the parametric assumption that the conditional expectation

of  is a weighted average of the unconditional expectation and students’ cumulative grade point average.

25This specification can be motivated by a model where the difficulty of year  is distributed around a fixed and unobserved
individual-specific mean, so  =  + . Individuals learn  after each year, but cannot separate  from . If  is
mean zero and serially uncorrelated, then [] = []. Also, since I have assumed risk neutrality, the variance of  has no
impact on expected utility or decisions, so can be ignored.

26This may not be accurate. Stinebrickner and Stinebrickner (2008) have direct evidence that students are over-confident about
their likely performance in college. How students form expectations about college is ripe area for future research.
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The weights are parameters to be estimated.27

[] = [|] + (1− )

=−1X
=1



− 1 if   1 (6)

To permit a general structure of correlation between unobservable preferences and ability, I specify that

 and  come from a mass point distribution which describe the ability and schooling preferences of 

different types of individuals.28  measures the unobserved academic aptitude of people of "type"  and

 is their preference for school of type . Type is known to the individual throughout, but is unknown

to the econometrician. Essentially, the specification permits the intercepts of academic performance and of

indirect utility to each take on three different values, corresponding to the three unobserved types. As a spe-

cial case, I will also estimate models with no unobserved heterogeneity, which assumes that all correlation

between preference for school and academic aptitude are captured linearly through []. 1(·) rep-

resents the non-stochastic component of the indirect utility of attending school. Individuals know baseline

characteristics () as well as the first period shocks (21,

41,


1) when making the initial enrollment

decision, but learn future shocks and grade outcomes only after enrolling. All other parameters of the model

are known to the individual throughout.

At each period  , the individual maximizes the expected discounted value of lifetime utility by choosing

whether to discontinue schooling and receive  or continue school for at least one more year. Solving the

model consists of finding the value functions for each alternative at each point in time:  
2 


4 and  

 .

These value functions take the following form:

 
 =  (7)

 
 =  + 

£
max

©
 
+1 


+1

ª¤
The decision problem can be solved for each individual by backwards recursion. In order to get a closed

form solution for the  [max { }] term, I assume these shocks are drawn from an Extreme Value Type

27This specification is an approximation of the normal learning model. The normal learning model imposes that  =
12

12+(−1)2


, where 2 is the variance of  and 2 is the variance of ( −). I have not imposed that the timing

of learning follow the behavior implied by the normal learning model. Instead, I estimate  and the variance of the residual
 −[] as parameters.

28The use of a mass-point distribution to approximate the distribution of preferences known to the agent but unknown to the
econometrician is discussed by Heckman and Singer (1984) and is widely used in dynamic structural work such as Keane and
Wolpin (1997) and Eckstein and Wolpin (1999). Here I estimate models with up to three points of support.

14



I distribution with location and scale parameters zero and  , respectively.29 The derivation of these value

functions is contained in the Appendix.

B Model alternatives

The empirical model places several important restrictions on individuals’ choice and information sets. I

assume that (1) labor market entry is costless but irreversible. People cannot return to school after entering

the workforce. I also assume that (2) individuals do not learn about the relative desirability of schooling and

work while in the labor market. In combination, these two restrictions mean that individuals "exercise their

option" by leaving school. Lastly, I assume that (3) labor market draws persist following labor market entry.

Individuals do not receive another labor market draw while in the workforce.

To see these assumptions more clearly, consider a general model in which attending school and working

both provide information - people learn about their enjoyment of each only through doing them (individual

subscripts have been omitted):

 =  +  ( ) + [
|==

 ] +  · 1(−1 = 1) + 

 =  +  ( ) + [
|==

 ] +  · 1(−1 = 0) + 

Individuals form expectations of the state-specific unknown component of indirect utility ( and) based

on information available at baseline (=), and that learned while working (=
 ) and attending school (=

 )

up to that point. Moving between the labor market and school is costly. Income while working or attending

school depends on labor market experience () and years of completed schooling () up to that point.

I assume  ( ) = − = −( + ). Any income earned during

school will be absorbed in the estimate of .

Assumption (1) corresponds to the restriction that  = ∞ and  = 0. While

it is possible to re-enter college after leaving, few people do so in practice.30 This restriction can be relaxed

and  and  can be estimated directly from the data.31 Also, the value of being

able to return to school is partially embedded in my estimates of . I combine the earnings of

29The assumption that labor market and schooling shocks have the same time-invariant variance could be relaxed.
30In my sample, the fraction of students who return in the year after their first year of non-enrollment is 17%, 19%, 28%, and

27% for those whose first year of non-enrollment is year 1 to 4, respectively. See the appendix for further details.
31Keane and Wolpin (1997) estimate the cost of returning to school after dropping out to be $23,000 during high school and

$10,000 during college.
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people who enter the labor market at period  and never return to school with those who eventually do return

to school. Therefore my estimate of  is inclusive of the expected financial gains of being able to

return to school after entering the labor market at time .

Assumption (2) corresponds to the restriction that=
 = = for all . High school graduates’ expectation

of the enjoyment of future work does not depend on their past experience. This assumption is innocuous

if people are not able to return to school upon discovering that they don’t like working. I also assume that

= = {   } and =
 = {1  −1}. The fact that returning to school is

rare could be due to high switching costs or to limited learning while working, so my specification requires

that only one of these assumptions holds. Allowing for learning about tastes for work is an important

extension, but one that may need to be pursued with a different dataset. I use course grades to measure

academic aptitude and to serve as a proxy for taste for school. The current dataset does not contain an

obvious analog proxy for individuals’ enjoyment of work.

Assumption (3) corresponds to replacing the labor market shock  with  · 1(−1 = 1). Indi-

viduals only receive a new labor market draw if they are currently attending school. I assume that each year

of college provides access to a new set of labor market opportunities previously unavailable, which increases

mean earnings and generates a new draw. Consistent with this assumption, Oreopoulos, von Wachter, and

Heisz (2006) find that temporary labor market shocks (e.g. graduating college during a recession) have

permanent effects on lifetime earnings. Significant initial earnings losses fade only after 8 to 10 years,

generating large losses in the total present value of lifetime earnings.

These generalizations are beyond the scope of this current paper, but their implications for my empirical

results are discussed in a later section.

C Interpretation of parameters

The indirect utility functions
n
 
 




o=4
=1

provide expressions for the relative desirability of entering

the labor market or continuing in school at time . This relative value depends on a number of primitive

parameters. The direct and opportunity costs as well as financial returns are captured in the terms 

and . Their importance to educational decisions have been the topic of much examination. Less

frequently studied is the contribution of academic ability to continuation decisions. This is captured by

 and the parameters of the grade function. I have modeled family background and ability as influencing

educational decisions primarily through expected scholastic aptitude (grades). This model can be used

16



to quantify the contribution of family background to educational outcomes that operates through college

academic performance. Family background influences academic performance, which in turn influences

educational decisions.

The value of enrollment is also influenced by the amount of uncertainty and the speed at which it is

revealed, as parameterized by  and { }=4=1. If  is high, then preference shocks have a high variance,

which increases the value of college enrollment and continuation. Future decisions take these preference

shocks into account, so a greater variance increases the likelihood that either the schooling or work shock

will be high, thus increasing the option value.

Option value decreases with the variance of grade shocks (). Since grades provide a noisy signal

of unobserved ability (which influences utility through academic performance), greater variance decreases

the signal value of grade realizations and thus the option value created by the ability to learn about aptitude

through grades. If grades provided no signal value (either because they were completely random or because

there is no uncertainty about ability), the value of enrollment would be diminished.

The temporal nature of learning about ability is parameterized by {}=4=1. If academic ability is

learned quickly, then  should decline rapidly at first then level off. If subsequent grade shocks continue

to provide new information about ability,  should continue to decline throughout college. The normal

learning model imposes that  follow a specific decreasing pattern over time.

D Estimation and identification

The parameters of the model are estimated with maximum likelihood using data on the enrollment deci-

sions, academic performance, and baseline characteristics of a panel of individuals.32 With no unobserved

32Full information maximum likelihood estimation was performed using a quasi-Newton algorithm and the BFGS Hessian
approximation. I used parameter estimates from the base (no learning) model as starting values for the learning model with five
discrete GPA categories (GPA = 0.0, 1.0, ..., 4.0). These estimates were then used as starting values for the learning model with
seventeen GPA categories (GPA = 0.00, 0.25, 0.50, ..., 4.00) .
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heterogeneity, individual 0 contribution to the likelihood function is

 = 1 · 2 · 3 where: (8)

Period 1: 1 = Pr(21 = 1)
21 Pr(41 = 1)

41 Pr(1 = 0)
1−1

Periods 2 to 4: 2 =

4Y
=2

Pr( = 1)
 Pr( = 0)

1−

Grades : 3 =

4Y
=1

Pr()

where 21 and 41 indicate pathway choice in period 1 and  is an indicator for enrollment in either

type of school during period . With the extreme value assumption on the preference shocks (which are

unobserved to the econometrician), choice probabilities take the familiar logit form and the likelihood of

grade outcomes given by the normal probability density function.33

When unobserved (to the econometrician) heterogeneity is included, the likelihood contribution of indi-

vidual  must be integrated over the joint distribution of  and  . Since this distribution is assumed to

have  mass points, the type-specific likelihood contribution must be summed over the  possible types,

weighted by the probability of being each type.

 =

X
=1



where  is the probability of being "type" , which is a parameter to be estimated.

With no heterogeneity, there are 18 parameters to estimate: seven in the utility function (02 04

   ) and eleven in the grade equations (0      1 2 2 3 3 4 4).

Unobserved heterogeneity adds four parameters (2 4  ) for each additional type.

The parameters in the utility function (02 04  ) are identified from the educational choices

up to the scale parameter  . For example, the difference in enrollment rates between individuals with

33The choice probabilities are:
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high expected grades and low expected grades but all else equal identifies the ratio  . Since utility is in

dollar units,  is identified from variation in  and  across individuals and across periods.

Holding all other variables constant, the estimate of  is the magnitude of preference shocks that is needed

to rationalize the proportions of people dropping out in each year, given the financial costs and benefits

from doing so and the parametric distribution assumed on the shocks. For instance, if the financial return to

completing a fourth year of college is much higher than completing the third year, then more people should

drop out before the third year than the fourth. The magnitude of this enrollment difference identifies  -

if the dropout rates are similar then the variance of preference shocks must be high (  must be large) to

rationalize the data. Cross-state tuition differences contribute to the identification of  in the same way. It

should be noted that the estimate of  will be affected by any bias in the estimate of the return to each year

of schooling. If the least squares estimated return to each year of school is biased upwards by unobserved

factors, then the estimate of  will also be overstated. However, most IV and twins estimates suggest that

ability bias in OLS estimates is not too severe.34

The parameters of the grade function are identified primarily from the grade outcomes in the typical

manner, though the educational choices also help identify these parameters.

Parameters associated with unobserved heterogeneity are identified by common behavior which is con-

trary to the model. For instance, there may be individuals with poor academic performance but who still

persist to graduation due to unmodeled parental pressure. If there are a sufficient number of similar individ-

uals, then a model that permits for this type of behavior will fit the data better (i.e., have a higher likelihood).

In practice, it is difficult to identify the discount factor  separately from  . In the current specification, I fix

 at 0.95.35

E Data

The model is estimated on a panel of 1773 men participating in the National Educational Longitudinal

Study (NELS).36 NELS participants were first interviewed in 1988, while in 8th grade, then again in 1990,

1992, 1994, and 2000. Complete college transcripts were obtained in 2000 for most participants. The

NELS transcript and survey data are used to construct the main variables used in the analysis - the college

34See Card (1999) for a review.
35I have estimated the model with  = 090 and the results are qualitatively similar. The estimate of the dollar value of the

option value decreases by one third reflecting a decrease in the estimated scale parameter  , but the relative importance of option
value to the value of enrollment and welfare is unchanged.

36Future work will estimate the model for women.
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enrollment indicators, grade outcomes, and baseline characteristics. I supplemented the NELS dataset with

institutional characteristics obtained from The College Board’s 1992 Annual Survey of Colleges and the

Integrated Postsecondary Education Data System 1992 Institutional Characteristics survey. For each NELS

individual, I merged on distance to the nearest two-year and four-year college (in miles) and average tuition

levels at public two-year and four-year colleges in each state.37

I define a time period as one academic year and classify individuals by years of continuous college en-

rollment following high school graduation. Students are considered enrolled during year  if they attempted

at least six course units (approximately part-time status) in both Fall and Spring of the academic year. Since

conditional expectations of lifetime income do not appear in the NELS dataset, I estimate them using data

from an earlier cohort, the National Longitudinal Survey of Youth 1979 (NLSY79). Using variables that are

common in both the NLSY79 and the NELS (such as high school GPA, parental education, AFQT, ethnicity,

urban and region), I estimate the parameters of a lifetime income equation separately by sex using OLS and

predict counterfactual lifetime income for individuals in the NELS sample. Essentially, I assume that indi-

viduals in my sample look at the experience of "similar" individuals twelve years older to form their income

expectations. This approach is similar to the "reference group expectations" referred to by Manski (1991).

I restrict the dataset to on-time high school graduates with complete information on key baseline vari-

ables (sex, high school GPA, parents’ education, AFQT, distance to nearest colleges) and complete college

transcripts (unless no claim of college attendance). I also exclude residents of Alaska, Hawaii, and the

District of Columbia. After these restrictions the final dataset contains 1773 men.

The data appendix contains more details on how the dataset was constructed.

IV Estimation Results

A Parameter estimates

Table I provides estimates of the structural parameters. Columns (1) and (2) provide estimates from a base

model with no learning about academic aptitude while columns (3) and (4) provide estimates from the full

model described above. Both models are estimated with and without allowing for up to three points of

unobserved heterogeneity. Standard errors were computed by taking the inverse of the numerical Hessian at

37The dataset does contain information about the specific school that students attend (e.g. tuition), but I have not yet used this
information in my analysis. Average tuition levels in each state are a more exogenous source of variation in the price of college
than school-specific tuition, which varies considerably between public and private institutions.
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the estimated parameter values.38

In the model without learning, expectations about grade realizations are based exclusively on base-

line characteristics and type, so [] = [| ] for all . The parameter estimates all have the

expected signs and are statistically significant. Since utility is in units of dollars, these estimates are imme-

diately interpretable as the dollar value (in $100,000) associated with a one-unit change in the independent

variable. With no unobserved heterogeneity or learning (column (1)), the estimates imply that four-year

colleges have amenities valued at $32,000 over two-year colleges. Expecting to do well in school is also

valuable. Each additional grade point (e.g. going from a C-student to a B-student) is equivalent to $70,000.

Living 100 miles from a college is equivalent to paying an additional $11,000 in tuition. A key parameter is

 , which parameterizes the variance of the preference shocks. At the estimated parameters, the preference

shocks have a standard deviation of $64,000
³
=  Π√

6

´
. As expected, the grade parameter estimates show

a strong positive correlation between academic performance and baseline characteristics such as academic

performance in high school, AFQT test scores, and parent’s education.

The estimate of  in column (1) could be biased if people with high academic ability also have a

stronger preference for attending school, independent of the causal effect of aptitude on schooling ease.

Column (2) addresses this concern by allowing for several different "unobserved types," each with an arbi-

trary correlation between schooling preference and academic aptitude. Permitting unobserved heterogeneity

improves model fit considerably. Relative to type 1 individuals, type 2 individuals (20% of sample) are

higher ability (2  0), but have a stronger dislike of 4-year colleges (42  0) and are neutral to

two-year colleges. These individuals can be thought of as good students from disadvantaged families. By

contrast, type 3 individuals (34%) are lower ability (3  0), have a stronger preference for 4-year col-

leges (43  0) and dislike two-year colleges (22  0), though this latter effect is not statistically

significant. Incorporating unobserved heterogeneity does not qualitatively change the other parameter esti-

mates. However, the estimated deviation of the preference shocks increases to $96,000. Consequently, the

magnitude of the other parameter estimates also increases. Interestingly, the relationship between expected

academic ability and enrollment probabilities (  ) changed little, increasing from 1.4 to 1.6 when unob-

served heterogeneity is permitted. The estimated variance of the grade shocks decreases because a greater

38For computational ease, I restricted grade variances to be positive and probabilities to be between zero and one during my
estimation. To do this, I estimated the log of the grade variances and the arguments to multinomial logit probabilities instead of the
actual grade variances or the type probabilities, respectively. Standard errors for these parameters were computed using the Delta
Method.
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share of the performance variance is captured by baseline characteristics (including type).

Columns (3) and (4) present estimates from the full learning model presented in Section 3. The parame-

ter estimates are very similar to estimates from the no-learning model, both qualitatively and quantitatively.

With learning, individuals estimate future academic performance by calculating a weighted average of per-

formance predicted with baseline characteristics (including type) and cumulative grade point average, where

the weights (2 3 and 4) are parameters to be estimated. The normal learning model predicts that

the weight placed on baseline characteristics should decrease with  ( 1 is normalized to one), as should

the residual grade variance (). The estimates in column (3), which do not control for unobserved het-

erogeneity, support this implication of the normal learning model. The best predictor of year-two grades

weighs baseline characteristics and first-year grades approximately equally (45% vs. 55%). Fourth-year

grades, however, are best predicted by placing only 19% of the weight on baseline characteristics and 81%

on three-year cumulative grade point average.

Due to unobserved heterogeneity, however, these estimates can overstate the amount of learning taking

place. [|] may not fully capture all information about future academic performance available to

individuals, so the increasing weight placed on cumulative academic performance may simply capture the

revelation of private information to the econometrician. Column (4) addresses this concern (and the potential

bias of  discussed earlier) by allowing for several different unobserved types, each with different levels

of academic aptitude, known ex-ante, and preferences for two- and four-year school. The estimates in

column (4), which allow for three different types, imply that learning about academic ability continues to

occur through the end of college. Controlling for unobserved heterogeneity does not change the learning

parameters much.39

The types identified in the learning model are slightly different than those revealed in the non-learning

model. Relative to type 1, type 2 individuals (7% of the sample) have higher academic aptitude, greater-

than-average preference for two-year colleges, and less preference for four-year colleges. Type 3 individuals

(59%) reflect students with poor academic aptitude who have lower than expected preference for two- and

four-year schools. Accounting for unobserved heterogeneity again increases  and the scale of most other

parameters, though the relationship between expected academic ability and enrollment probabilities (  )

39These results assume that I have specified the information set used by individuals correctly. If students possess information
about future grades beyond that modeled here, these estimates overstate the extent of uncertainty and learning and understate the
extent of hetergeneity. The methods presented in Cuhna, Heckman, and Navarro (2005) could be used to distinguish between these
two sources of variability.
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changes little. The overall model fit also improves when unobserved heterogeneity is permitted. I now

discuss model fit more directly.

B Model fit

To examine model fit, I simulate the grade outcomes and educational choices of individuals in my estima-

tion sample 50 times and compare the predicted outcomes to the actual observed outcomes. In this section

I discuss simulations that use the preferred estimated parameter values, from model (4) from Table I. In

the appendix, I also examine model fit for the models that do not incorporate unobserved heterogeneity

and learning simultaneously (models (1) to (3) in Table I). In general, the preferred specification provides a

much better fit of the data than the simpler models. I examine model fit in two ways. First, I compare actual

to predicted enrollment outcomes, including initial pathway choice, dropout, and college completion. This

comparison is also done by demographic characteristics which are not explicitly incorporated in the model.

I then examine the relationship between grade outcomes and subsequent enrollment decisions. It should be

noted that if the model contained utility intercepts that differ over time, by school, and by academic perfor-

mance, then the moments presented below would not constitute a true test of "fit." Such a fully saturated and

calibrated model would fit the data perfectly. The model I employ is much more parsimonious, as I discuss

below.

Figure VI compares the predicted enrollment decisions to the actual decisions made by individuals in

the estimation sample. Overall, the model predictions fit the distribution of actual enrollment decisions rea-

sonably well considering how unsaturated the model is. Forty-two percent of individuals are predicted not

to enroll, three percentage points below the actual share. Consequently, enrollment in four-year colleges is

over-predicted by three percent. The fraction of individuals enrolling in two-year colleges is identical be-

tween actual and predicted. The goodness of initial enrollment decision fit is not surprising since the model

includes separate constants for two- and four-year schools in the utility function (0). If the parameters

were estimated using only the initial enrollment decision, these shares would fit exactly.

The fit of dropout behavior following initial enrollment decision is a much better test of the ability of the

model to predict behavior. Since the utility intercepts do not vary over time, predicted differential dropout

between different periods is driven entirely by between-period differences in the financial returns (lifetime

earnings gain minus costs) and changes in expected academic performance ([]).

Figure VII depicts the fraction of two- and four-year enrollments who drop out in each year or graduate.
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There are two primary discrepancies between the model predictions and actual outcomes. First, the model

slightly underpredicts the fraction of people beginning at community college that drop out after one or three

years and consequently over-predicts completion. The second discrepancy is that the model over-predicts

dropout after the first year among people that start at a four-year college and consequently underpredicts

college graduation.40

Figures VIII and IX characterize the accuracy of enrollment predictions by family background. Figure

VIII compares actual and predicted enrollment shares by parents’ education. Recall that parent’s education

does not enter individuals’ preferences for school directly. Rather, higher parental education increases aca-

demic aptitude, which in turn makes schooling more desirable. Also, higher parental education increases

predicted lifetime income, which reduces individuals’ sensitivity to schooling costs. Despite this restriction,

the model captures several important features of the intergenerational correlation of education. Students

whose parents have college degrees are much more likely to attend four-year schools and also to graduate

from college. Students whose parents do not have a college degree are much less likely to enroll in college

or to start at a four-year school, and are much less likely to graduate from college conditional on enrollment.

The model replicates these basic patterns.

Figure IX presents similar graphs by whether students come from a high- or low-income family. Family

income does not enter the model at all, so this is a pretty strong test of model fit. Any correlation be-

tween family income and enrollment outcomes must operate through the correlation between family income

and the three other background characteristics (high school performance, AFQT, and parental education).

Nonetheless, the model still captures several important features of the data, namely the strong positive cor-

relation between family income, college enrollment, and degree completion.

Enrollment decisions and grade outcomes are related for a number of reasons. First, students with

adverse baseline characteristics (e.g., poor grades in high school) have low expected college aptitude, which

increases the disutility of school. Consequently, students with low expected academic performance will

be less likely to enroll and more likely to drop out if they do enroll. Second, if students learn about the

desirability of college through their grades, then students who persist to graduation will have consistently

received high grades while those who dropped out will have received low grades.

Figure X examines the ability of the model to replicate these features of the data. Figure X displays

40The model could be expanded to allow starting at a community college to affect psychic schooling costs in later periods to
capture the disruption costs associated with transferring schools. This extension should address both of these discrepancies.
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the fraction of students that complete their fourth year by their first-year grade point average. The dark line

(filled circles) is the actual data, while the other (open circles) corresponds to predictions from the preferred

model with learning and unobserved heterogeneity. The overall slope and curvature of the grade-graduation

relationship is matched very closely. Like the actual data, predicted completion is increasing most quickly

in the middle grade span, where grade signals are expected to be most influential.

C Discussion of estimates and fit

To summarize, the parameter estimates suggest that uncertainty is an important feature of postsecondary

schooling outcomes. The preferred estimates (column (4) from Table I) indicate that the deviation of unan-

ticipated shocks to the relative preference for enrollment and labor market entry is equivalent to $83,000 in

lifetime earnings. These shocks have the same order of magnitude as the incremental gain from complet-

ing a college degree. Thus, unanticipated preference shocks are an important determinant of educational

outcomes. It should be noted that the model assumes that individuals face no credit constraints. My specifi-

cation does not permit me to distinguish between large shocks and small shocks whose effects are magnified

by credit constraints. My estimates reflect the combination of these two factors.41 The estimates also sug-

gest that students learn about their ex-ante unknown academic aptitude through college grades. Lastly, the

estimates suggest that academic aptitude does predict enrollment outcomes and that much of the relationship

between family background and schooling outcomes can be captured through the effect of background on

academic performance.

Predictions from simulations using the estimated model parameters do match many features of the ac-

tual data on enrollments and grade outcomes. The overall distributions of predicted and actual outcomes is

roughly similar and the model captures several main features of the relationship between grade outcomes

and enrollment decisions. Importantly, the model also replicates educational differences by background

characteristics, despite the strong restriction that they operate entirely through expected academic perfor-

mance.

41Incorporating credit constraints would require a different structural model. Cameron and Heckman (2001) use such a model
and conclude that long-run factors associated with family background, not short-term credit constraints, explain much of the ob-
served racial disparity in college education. Credit constraints may also interact with financial aid to influence the effects of various
policies that have the same monetary value (e.g. equal valued tuition reductions vs. subsidies).
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V The Importance of Option Value

In this section, I estimate the option value created by the ability of students to make educational decisions

sequentially and in response to new information. To do this, I treat the estimated structural model as the

actual data generating process and simulate educational choices and welfare under alternative assumptions

about individuals’ information set.42 In the limited-information static model, I simulate outcomes when

individuals are restricted to commit to educational choices before enrolling in college. They base their de-

cision only on information available before college enrollment. This includes baseline characteristics (high

school GPA, AFQT, parent education, and type), predicted lifetime earnings, direct tuition and commuting

costs, and first-period shocks (21 

41 


1). As a basis of comparison, I also simulate the choices and

welfare in the first-best scenario, where individuals make decisions with perfect knowledge of all future

shocks.

A Educational outcomes

Figure XI summarizes the importance of option value to educational decisions. The top panel plots the

average number of years of college by expected academic ability, separately for the first-best full information

(solid), baseline dynamic (dashed), and static (dotted) models. The static model predicts that education

would be much more bifurcated if students were forced to commit ex-ante with limited information. People

with low expected performance would get very little education while high ability students would get much

more. Compared to the first-best outcome, this bifurcation reduces welfare because some ex-ante low-ability

students should go to or graduate from college, while some higher ability students should not. Sequential

decision-making permits individuals to come closer to the first-best outcome.

This can be seen more clearly in the middle and bottom panels, which plot the simulated enrollment

and graduation rates by expected ability. These figures are the empirical analog to Figure IV, where

[| ] is analogous to 1. Option value increases the enrollment rates of all individuals, partic-

ularly those in the middle who are on the enrollment margin in the static model. Many of these individuals

would choose to enroll if they knew their shocks with certainty but would not if they were forced to commit

ex-ante. For low- to moderate-ability students, option value only slightly increases college completion.

42To implement the simulations, I first replicate each observation 100 times. For each of these simulated observations, I then
draw preference and grade shocks from the appropriately scaled EV(1) and normal distributions and assign an unobserved "type"
based on the estimated probabilities. The optimal choices for each individual are then computed by utility comparisons, incorpo-
rating these shocks.
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The biggest effect of option value on completion is to reduce it for high ability students. Some high-

ability students expect to graduate - so would commit to doing so ex-ante - but then learn that completion

is undesirable and would prefer to drop out. Allowing them to do so reduces completion rates but improves

their welfare.

B Quantifying option value

Figure XII quantifies the option value of college enrollment. The figure plots the average value of the

opportunity to enroll in college by expected academic ability for the same three scenarios and is the empirical

analog of Figure III. This value is zero for those who do not enroll. The value of the opportunity to enroll

is increasing in expected ability both because enrollment increases with ability and because school is less

costly for high ability people, so value conditional on enrollment is also increasing. The vertical distance

between the solid and dotted lines represents individuals’ total welfare loss from being forced to commit

to an educational outcome ex-ante, compared to the first-best situation with full information. This loss is

greatest for moderate-ability individuals. Since sequential decision making helps more individuals obtain

their optimal level of education, it partially closes this welfare gap, as indicated by the dashed line. The

difference between the dashed and dotted lines thus represents the value of the option to drop out whenever

continuation turns out to be undesirable.

Table II presents calculations of the option value by expected ability categories. On average, students

would be willing to pay $15,700 (in 1992 dollars) to maintain the ability to make decisions sequentially in

response to information. Given the precision of the parameter estimates, total option value is fairly precisely

estimated with a 95% confidence interval of $12,400 to $19,100.43 Consistent with the simple theoretical

model, option value varies considerably with ability. Moderate-ability students, for whom educational out-

comes are most uncertain, are willing to pay up to $26,400, while the lowest ability students derive virtually

no value from the option. The option is also worth less to higher ability students because their enrollment

decisions do not depend on it.44

Table II also normalizes the option value in two ways. My estimates imply that option value accounts

43Since the option value is a highly nonlinear and complicated function of the parameters, I rely on simulations to compute the
confidence intervals. Confidence intervals were computed by performing the option value simulation/calculation for 100 different
draws of the parameter vector from its estimated distribution.

44These estimates are not directly comparable to those presented in Table 7 of Heckman, Lochner, and Todd (2006) because
their model is one of exogenous dropout and their estimates include continuation value. That said, their estimate of the option value
of college attendance is of a similar order of magnitude as that reported here.
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for 13% of the total value of the opportunity to enroll in college. For low to moderate ability students, this

fraction is even higher. Option value also represents approximately one quarter of the welfare loss associated

with moving from the full information to static scenarios.

Additional simulations are used to allocate the total option value into the years in which new information

is learned. The first three years of college each provide new information about academic ability (in the form

of grade signals) and the relative desirability of schooling and work (2 

4 


). To do this decompo-

sition, I simulate educational choices and welfare when individuals are restricted to commit to educational

choices before enrolling in college (the static model discussed above), after the first year, after the second

year, and after the third year (the baseline dynamic model). Figure XIII summarizes this decomposition. For

moderate-ability students, the most valuable information is that which is learned in the first year of college,

when the wisdom of their enrollment decision is most uncertain. Higher ability students derive relatively

more value from information received later, when graduation decisions are made. Approximately 60% of

the total option value derives from information learned in the first year, while the other two years account

for about 20% each.

To summarize, the value of the option to drop out is considerable, particularly for moderate ability

students who have the most uncertainty about their net benefit from schooling. The option to drop out has

value both because it encourages more people to enroll, who may not want to if forced to commit ex-ante,

and it because it permits dropout if graduation is undesirable among those who would commit to graduate

ex-ante. In aggregate, the former is greater than the latter. Furthermore, the majority of the aggregate option

value comes from the information received in the first year of college.

C Option value in a more general setting

Section III.B identified several ways in which the empirical model could be generalized. In the current

specification, I have assumed that (1) labor market entry is costless but irreversible, or (2) individuals do not

learn about the relative desirability of schooling and work while in the labor market, and (3) labor market

draws persist following labor market entry. This is a special case of a more general model in which attending

school and working both provide information and where decisions are not completely irreversible. Relaxing

these assumptions would affect my estimate of the option value. In the extreme case, with no switching

costs and completely symmetric learning (i.e. people learn as much about their tastes while working as they

do attending school), enrollment and labor market entry would provide equal option value, so the net total
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informational value would be zero. Though the information learned in school is valuable, this value is offset

by the cost of lost information that could be gained by working. Consistent with the discussion in Dixit and

Pindyck (1996), option value requires irreversibility or asymmetry.

Another asymmetry in the current specification is that individuals receive new labor market draws only

if enrolled in school, so enrollment lets people delay labor market entry until receiving a favorable draw.

Relaxing this restriction so that people receive new labor market draws while not in school will also reduce

the estimated option value. The appropriateness of this assumption can be examined using annual data on

labor market outcomes, which the current dataset does not contain.

Though the maintained structural assumptions seem plausible, my estimates should be considered an

upper bound of the true option value. Relaxing these assumptions as described above would reduce the

option value associated with enrollment.

D Policy consequences of educational uncertainty

In simulations not reported here, I use the estimated model to examine the effects of a wide range of policies

aimed at increasing college enrollment and graduation.45 I find that enrollment and graduation decisions

are relatively insensitive to large across-the-board tuition subsidies. Direct costs - particularly future ones -

are less important if information acquisition and academic aptitude are central determinants of enrollment.

In contrast, the existence of community colleges has a large effect on the fraction of students who receive

some postsecondary education, but the effect on college graduation is negligible. Low-income students are

particularly influenced by community colleges, which provide an inexpensive way for students to test the

college waters. Improvements to the K-12 system, which bring the least-prepared high school graduates up

to the median high school GPA have large effects on both enrollment and completion. These effects are

particularly strong for low-income students, who are often the least prepared for college. Finally, providing

a $10,000 bonus to low-income students who graduate from college would increase the graduation rate of

this group slightly, but would have little impact on enrollment.

All of the above education policies have a temporal dimension. For instance, the graduation bonus

directly alters the financial gain to the final year of college but not the first three. Community colleges

explicitly alter the tuition gradient by making the first half of college cheaper than the last half. If students

are forward-looking these changes will be considered during enrollment decisions and they will alter the

45Simulation details and results are available from the author upon request.
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continuation value associated with each year of college. Because of these temporal considerations, predicted

policy effects may depend on whether decisions are assumed to be made in a static or dynamic fashion.

To examine whether the use of a static framework provides misleading predictions about policy effects, I

simulate educational choices under the four policies described above, but assuming that people must commit

to their decision before enrolling in college. Table III compares the estimated program impact on enrollment

rates, graduation rates, and average years of school between the static and dynamic models.

While predictions are qualitatively similar, a static model may misstate the magnitude of some policy

effects. Compared to the dynamic model, the static model slightly under-predicts the effect that community

colleges have on expanding enrollment. In addition to making college less expensive, community colleges

increase the option value of enrollment because dropout is less costly so more people experiment. The static

model does not fully incorporate this added benefit. In contrast, the static model over-predicts the effect of

across-the-board tuition reduction on college completion. The static model predicts a more bimodal educa-

tion distribution, with many non-enrollees and graduates, but few dropouts. Consequently, more enrollees

are predicted to continue through to graduation. The static model also over-predicts the graduation con-

sequences of increasing academic preparedness in high school. Expected performance in college - which

depends heavily on high school GPA - has much more influence on educational outcomes in the static

model. If decision-making is dynamic, then less weight is placed on ex-ante expected performance as new

information is acquired during each year.

Two implications of these simulations are worth noting. First, uncertainty is an important feature of

educational decisions and failing to account for it may provide misleading estimates of policy effects. This

is particularly true when evaluating policies that have different temporal characteristics, such as community

colleges (which alter the tuition gradient) or across-the-board tuition reductions (which do not). A second

implication is that academic performance is one major channel through which background characteristics -

such as parents’ education or income - influence educational outcomes. Policies which directly affect stu-

dents’ academic aptitude - such as improving college preparation - can substantially reduce socioeconomic

gaps in educational outcomes.
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VI Summary and Conclusions

This paper examines the empirical importance of uncertainty and option value to college enrollment. It is

the first to quantify the magnitude of the option value that arises when individuals make decisions to invest

in a college education sequentially and when the desirability of doing so is uncertain. Estimates suggest

that this value is substantial. In contrast to a scenario where individuals must commit to an educational

outcome ex-ante, the current flexible system increases welfare by $16,000 on average. This represents 13%

of the overall value of the opportunity to enroll in college. Moderate-ability students, who have the most

uncertainty about the desirability of schooling, derive even more value from this flexibility. The traditional

human capital model ignores this value.

The finding that flexibility substantially improves welfare has direct implications for the potential costs

of student "tracking." This paper suggests that, at least in the U.S. postsecondary context, students learn

quite a bit about their ability in the first few years of college. Forcing students to commit ex-ante will

make educational outcomes more polarized by background characteristics and reduce welfare, particularly

for students at the margin. This welfare loss must be weighed against any efficiency gains resulting from

greater specialization through earlier tracking, such as that identified by Malamud (2007).

The general framework developed herein could also be used in a number of different contexts in which

decisions are partially irreversible and made in the presence of uncertainty.46 One potential application is

the use of "take-it-or-leave-it" job offers. Firms hiring many law or business school graduates force students

to commit to a job early in the fall, possibly before their industry or locational preferences are finalized.

The model implies that firms would have to compensate individuals for this loss of flexibility, through a

signing bonus or higher salary. Marriage and fertility decisions are also partially irreversible and made

in the presence of uncertainty. The ability to wait and acquire more information before committing to a

decision thus creates option value. The effects of policies that alter the ability to reverse a decision (e.g.

divorce costs) operate through this channel. Investments in health can also be understood as motivated by

option value considerations. Since many health conditions (e.g. weight gain, diabetes onset, lung cancer)

are partially irreversible, forward-looking individuals should make costly health investments when young

in order to preserve the option of being healthy when old. Subsidies for preventative care, a healthy diet,

and exercise among the young can be rationalized by this option value if individuals are not completely

46Retirement decisions are one topic in labor economics to which this framework has been applied. See Stock and Wise (1990)
and Coile and Gruber (2006) for an application of option value to the study of retirement decisions.
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forward-looking.

On the specific topic of college enrollment, the current specification could also be extended in a number

of directions. First, the model could be modified to allow for discount rate heterogeneity by introducing a

fourth unobserved "type" with a very large discount rate (say 50%). The presence of individuals with high

discount rates may influence the outcomes and welfare consequences of the examined policies, as well as

the option value estimates. A second extension is to isolate the contribution of the various sources of option

value. In the current form of the model, enrollment has option value because it (1) reveals information about

college aptitude and the persistent psychic costs (or benefits) of school attendance; (2) reveals information

about the short-term (nonpersistent) relative desirability of school attendance; and (3) allows individuals to

delay labor market entry until receiving a high labor market offer. The current specification does not permit

the estimation of the contribution of each of these components. Allowing individuals to receive labor market

offers while not in school would separate the third source from the first two.

Third, the restrictions on switching costs and learning asymmetry between schooling and work could be

relaxed. The current specification makes the simplifying assumption that labor market entry is irreversible

and provides no new information. A more general specification would allow the data to dictate the relative

magnitude of these model features. Lastly, the model could be extended to the high school and graduate

school decisions, as well as modified to permit delayed college entry and stop out. High school and college

graduation both have option value because they enable college and graduate school enrollment, respectively.

The ability to drop out and return to college (referred to as "stop out") or to delay college entry are also

valuable. The current analysis does not consider these additional sources of option value but future work

exploiting sufficiently rich labor market data could.
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Figure I: Returns to and Distribution of Postsecondary Education, Men
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Figure II: Simple Dynamic Model of College Enrollment and Completion
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Figure III: Value of Enrollment Opportunity for Varying Degrees of Uncertainty
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Figure IV: Educational Consequences of Uncertainty
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Figure V: Full Empirical Dynamic Model
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Table I: Estimates of Structural Parameters

One type Three types One type Three types
(1) (2) (3) (4)

Utility parameters
constant (2yr) -2.88 -4.21 -2.53 -3.25

(0.16) (0.43) (0.12) (0.39)

constant (4yr) -2.56 -3.66 -2.18 -2.91
(0.14) (0.38) (0.11) (0.34)

E[Ai] 0.70 1.21 0.59 1.04
(0.05) (0.16) (0.04) (0.16)

distance (100) 0.11 0.25 0.12 0.22
(0.03) (0.07) (0.04) (0.07)

tau 0.50 0.75 0.51 0.65
(0.02) (0.07) (0.02) (0.07)

Grade parameters
constant (gpa) 1.21 0.88 0.80 0.69

(0.06) (0.07) (0.08) (0.09)

HS GPA 0.38 0.39 0.43 0.51
(0.02) (0.02) (0.03) (0.03)

AFQT 0.43 0.67 0.61 0.72
(0.04) (0.07) (0.06) (0.08)

ParBA 0.19 0.26 0.27 0.32
(0.02) (0.03) (0.03) (0.03)

E[A|X] period 1 1.00 1.00
(fixed)

E[A|X] period 2 0.45 0.49
(0.03) (0.03)

E[A|X] period 3 0.31 0.33
(0.04) (0.05)

E[A|X] period 4 0.19 0.22
(0.05) (0.06)

sd_gpa 0.64 0.47
(0.01) (0.01)

sd_gpa1 0.65 0.62
(0.01) (0.02)

sd_gpa2 0.52 0.51
(0.01) (0.01)

sd_gpa3 0.52 0.52
(0.01) (0.01)

sd_gpa4 0.55 0.54
(0.02) (0.02)

Type-specific parameters

constant (gpa) - T2 0.62 0.22
(0.02) (0.09)

constant (2yr) - T2 0.05 0.55
(0.08) (0.21)

constant (4yr) - T2 -0.25 -2.61
(0.08) (0.57)

probability T2 0.20 0.07
(0.02) (0.01)

constant (gpa) - T3 -0.92 -0.55
(0.04) (0.07)

constant (2yr) - T3 -0.09 -1.87
(0.13) (0.72)

constant (4yr) - T3 0.32 -0.44
(0.09) (0.13)

probability T3 0.34 0.59
(0.03) (0.06)

Observations 1773 1773 1773 1773
lnL (total) 5624 5172 5198 5054

        

LearningNo Learning
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Figure VI: Actual vs. Simulated Educational Outcomes
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Figure VII: Actual vs. Simulated Outcomes Conditional on Enrollment
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Figure VIII: Model Fit of Educational Outcome Differentials by Parent Education
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Figure IX: Model Fit of Educational Outcome Differentials by Familiy Income

Figure X: Actual vs. Simulated Graduation Rates by 1st Year GPA
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Figure XI: Effect of Uncertainty on Educational Outcomes
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Figure XII: Average Value of College Enrollment Opportunity by Expected Academic Ability

Table II: Estimated Option Value, by Expected Academic Ability

E[Ai | Xi] Estimate 5% 95% Estimate 5% 95% Estimate 5% 95%

1.0 0.2 0.1 1.7 3% 3% 17% 1% 1% 11%
1.5 3.6 3.0 5.8 26% 23% 30% 13% 11% 18%
2.0 18.5 14.6 22.3 36% 29% 39% 28% 26% 30%
2.5 26.4 19.1 33.0 19% 15% 22% 33% 29% 34%
3.0 14.9 12.0 19.8 5% 5% 7% 26% 23% 29%
3.5 9.3 4.6 17.1 2% 1% 4% 20% 9% 30%

All 15.7 12.4 19.1 13% 12% 15% 27% 25% 29%

O.V. as % welfare loss between full 
information and static scenarios

Notes: For a given parameter vector, option value is calculated as the average welfare difference between the static and dynamic scenarios when the 
type, shocks, and choices of each observation is simulated 100 times. Confidence intervals are computed by performing this option value calculation for 
100 different draws of the parameter vector from its estimated distribution.

Option value ($1,000)
O.V. as % total value of enrollment 

in dynamic scenario
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Figure XIII: Option Value of New Information Acquired During Each Year of College

Table III: Simulated Policy Effects: Dynamic vs. Static Model

Comm unity College Dynamic Static Dynamic Static Dynamic Static
Fraction Enroll ing 7.36% 6.97% 7.30% 7.02% 7.43% 6.90%

Fraction Graduating 0.44% 0.36% 0.42% 0.31% 0.48% 0.44%

Elimination of Di rect Tuition and Com muting Costs
Fraction Enroll ing 2.82% 2.83% 2.78% 2.78% 2.87% 2.91%

Fraction Graduating 2.64% 3.15% 2.78% 3.24% 2.45% 3.02%

Improve Preparedness
Fraction Enroll ing 3.74% 3.84% 2.91% 3.00% 4.82% 4.93%

Fraction Graduating 2.51% 4.30% 2.03% 3.07% 3.14% 5.90%

Low-Income Graduation Bonus
Fraction Enroll ing 0.18% 0.25% 0.00% 0.00% 0.42% 0.59%

Fraction Graduating 0.48% 0.42% 0.00% 0.00% 1.10% 0.95%

Overall High Income Low Income
Estimated Change in Educational Outcomes
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Appendix 1. Full Model and Solution

Structure of Choices and Preferences

I model the college enrollment and continuation decisions at four periods in time, corresponding to the four

academic years after high school graduation. During the first period individuals decide whether to start

at a four-year or two-year college, which I refer to as pathway choice, or to not enroll in college. The

pathway chosen affects the level and timing of direct schooling costs (which may differ across individuals)

and unmodeled college amenities. At each time period  an individual chooses whether to enter the labor

market (receiving payoff ) or continue in school for another year, receiving payoff  in period  and

the option to make an analogous work-school decision in period  + 1, where  = 2 4 denotes the type

of school currently attending. After period two, students that started at a two-year college must attend a

four-year college if they want to continue in school.47 After period four, there are no more decisions to

make and all individuals enter the labor market.48

Utility is in dollars. The indirect utility from discontinuing school and entering the labor market at period

 equals the expected present discounted value of lifetime income from period  to age 62 () plus

a random component .

 =  +  (A1)

The expected indirect utility derived from attending school during period , , depends linearly on a

heterogeneous intercept ( , specified later), expected unknown ability (), direct tuition and commuting

costs, and a random component .  and  vary by the type of school currently

attending (2-year or 4-year), so individuals that start at a two-year school will pay community college tuition

for the first two years then four-year college tuition for their third and fourth years.

 =  + []− ( + ) +  (A2)

The random shocks (,

) are learned by the individual prior to making the period  decision. The

47In the estimation, I do not actually distinguish between people attending two- and four-year schools in their third year. I
simplify by assuming that anyone who started at a two-year school that is enrolled in their third year faces the four-year school cost
structure, even if they are actually enrolled in a two-year school.

48The model does not currently permit two-year and four-year colleges to affect earnings differently or allow for heterogeneity
among four-year colleges. Kane and Rouse (1995) find that the return to education received at two- and four-year institutions is
comparable. They estimate that the average college student earned about 5% more than similar high school graduates for every year
of credits completed, regardless of where those credits were earned.
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term[] captures the preference for school (in dollar terms) that covaries with its expected difficulty.49

Individuals do not know at any time, so they form expectations of it when making their period- decisions.

Utility is cumulative so individuals who attend a two-year school for two years then enter the labor market,

for instance, will receive total lifetime utility of 21 + 22 + 23, where  is a discount factor.

1(·) represents the non-stochastic component of the indirect utility of attending school. Individuals

know baseline characteristics () as well as the first period shocks (21,

41,


1) when making the initial

enrollment decision, but learn future shocks and grade outcomes only after enrolling. All other parameters

of the model are known to the individual throughout.

Academic Performance

At the end of each year, students enrolled in college learn their performance during that year. Academic

performance is measured by the college grade point average (on a four-point scale) during period . I

assume that grades provide a noisy signal of :

 =  + 

 (A3)

The  is the component of grade outcomes that is not serially correlated. This represents idiosyncratic

determinants of academic performance that do not persist across time. The conditional expectation of  on

baseline characteristics () is given by the heterogeneous term , which is specified in the next subsection.

[|] =  (A4)

Heterogeneity

The variables  and  represent persistent preferences for school and persistent determinants of academic

aptitude, respectively, which may be correlated in the population.  varies with school type () so that

individuals may have different tastes for attending a two- or four-year school. To permit a general structure

of correlation between unobservable preferences and ability, I specify that  and  come from a mass

49This specification can be motivated by a model where the difficulty of year  is distributed around a fixed and unobserved
individual-specific mean, so  =  + . Individuals learn  after each year, but cannot separate  from . If  is
mean zero and serially uncorrelated, then [] = []. Also, since I have assumed risk neutrality, the variance of  has no
impact on expected utility or decisions, so can be ignored.
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point distribution which describe the ability and schooling preferences of  different types of individuals.50

Type is known to the individual throughout, but is unknown to the econometrician. I also make the para-

metric assumption that the conditional expectation of  on baseline characteristics is linear in high school

grade point average (), percentile score on the AFQT, and whether a parent has a college degree

().

 = 0 +  for  = 1 2  (A5)

 = 0 +  +  +  +  (A6)

where  measures the unobserved academic aptitude of people of "type"  and  is their preference

for school of type . I estimate models permitting up to three types ( = 3). For Type I individuals,  and

 are normalized to zero. Essentially, the specification permits the intercepts of academic performance

and of indirect utility to each take on three different values, corresponding to the three unobserved types.

As a special case, I will also estimate models with no unobserved heterogeneity, which assumes that all

correlation between preference for school and academic aptitude are captured linearly through [].

Solution

At each time  , the individual maximizes the expected discounted value of lifetime utility by choosing

whether to discontinue schooling and receive  or continue school for at least one more year. The decision

problem can be solved for each individual by backwards recursion and by assuming a distribution for the

preference and grade shocks (, 

, 


). Throughout I assume that 2,


4, and  are drawn from

an Extreme Value Type I distribution with location and scale parameters zero and  , respectively. Grade

shocks are assumed to be normally distributed with 

 ∼ (0 )

With learning, individuals update their belief about  in response to new information received through

grades. I make the parametric assumption that the conditional expectation of  is a weighted average of

the unconditional expectation and students’ cumulative grade point average. The weights are parameters to

50The use of a mass-point distribution to approximate the distribution of preferences known to the agent but unknown to the
econometrician is discussed by Heckman and Singer (1984) and is widely used in dynamic structural work such as Keane and
Wolpin (1997) and Eckstein and Wolpin (1999).
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be estimated.

[] = [|] if  = 1 (A7)

= [|] + (1− )

=−1X
=1



− 1 if   1

This specification is an approximation of the normal learning model. The normal learning model im-

poses that  =
³

12
12+(−1)2

´
, where 2 is the variance of  and 2 is the variance of ( −).

I have not imposed that the timing of learning follow the behavior implied by the normal learning model.

Instead, I estimate  and the variance of the residual  −[] as parameters.

At period 4 the final enrollment decision is made by comparing the lifetime utility of entering the labor

market without graduating to that of continuing for one more year. In periods 2 through 4, I omit the 

subscripts.

 
4 = 4 + 4 (A8)

 
4 = 0 +  + 4[]− 4 + 4[5] + 4

where 4 = 4+4 At period 4, expectations are taken over the distribution

of labor market shocks in period 5 (5) and grade shocks in period 4 (4). Since all individuals enter

the workforce upon reaching period 5, 5 =  
5 = 5 + 5 and 4[5] = 5 + 

from the extreme value assumption [ = 0577 is Euler’s constant]. Future utility is discounted at the rate

. If individuals learn about unobserved ability through grades, then 4[] is a weighted average of the

unconditional expectation and previous grade realizations:

 
4 = 0++

⎡⎣4[|] + (1− 4)

=3X
=1



3

⎤⎦−4+[5+ ] + 4 (A9)

Individuals will continue to graduation if  
4   

4.

At periods 2 and 3, the enrollment and continuation decisions are made by comparing the lifetime
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utility of entering the labor market immediately to that of continuing school for one more year.

 
 =  + 

 
 = 0 +  + []−  + [+1] + 

where +1 = max( 
+1 


+1). Expectations are again taken over the distribution of all future

preference shocks ( 

 for   ) and grade shocks ( for  ≥ ), but now both of these influence

future educational decisions. Integrating out the grade shocks (due to conditional independence between

grades and shocks, see Rust (1987)), the max term can be written as:



£
max( 

+1 

+1)

¤
=

Z


£
max( 

+1 

+1)|

¤ ·Π(| {1−1})

where Π(| {1−1}) is the pdf of the -period grade outcome conditional on information avail-

able at time . The conditional expectation is taken only over the future preference shocks ( 

 for

  ). Again with the assumption that the preference shocks are not serially correlated and are drawn from

an extreme value distribution, this expectation has a closed-form representation51:



£
max( 

+1 

+1)

¤
=

Z ∙
+  log

½
exp

µ
1




+1()

¶
+ exp

µ
1




+1

¶¾¸
·Π(| {1−1})

In order to actually solve and estimate the model, I discretize  into  values and approximate

Π(| {1−1}) with a discretized version (| {1−1}).52 The max term can then

be written as



£
max( 

+1 

+1)

¤
=

X
=1

∙
+  log

½
exp

µ
1




+1(


)

¶
+ exp

µ
1




+1

¶¾¸
· (| {1−1})

51Domencich and McFadden (1975, Chapter 4) show that the expected value of the maximum of an EV(1) random variable has
this closed form representation.

52See Rust (1987). Since grades are distributed normally, the transition probabilities can be computed directly us-

ing the standard normal cumulative distribution function. (| {1−1}) = Φ


+(05)∗−[]




−

Φ


−(05)∗−[]




where kstep is the distance between the points in the discretized grade space.
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And the indirect utility function becomes:

 
 = 0 +  + 

⎡⎣[|] + (1− )

=−1X
=1



− 1

⎤⎦−  (A10)

+

"
X
=1

∙
+  log

½
exp

µ
1




+1(


)

¶
+ exp

µ
1




+1

¶¾¸
· (| {1−1})

#
+ 

Individuals will continue their education if  
   

 .

At period 1, the value of the two enrollment options takes a similar form:

 
1 = 0 +  + [|]−  (A11)

+

"
X
=1

∙
+  log

½
exp

µ
1




2(


1)

¶
+ exp

µ
1




2

¶¾¸
· (1| )

#
+ 1

At period 1, individuals maximize expected lifetime utility by choosing between  
21 


41 and  

1

Appendix 2. Dataset Construction

The dataset used in estimation and simulation was constructed from several sources. Table A1 provides an

overview of the main variables used in the analysis. The sample of individuals comes from the National

Educational Longitudinal Study (NELS). The NELS is a longitudinal survey of a representative sample of

U.S. 8th graders in 1988. Interviews were conducted in 1988, 1990, 1992, 1994, and 2000 and complete

college transcripts were obtained for most individuals in 2000. The core schooling outcome variables, in-

cluding yearly grade point average and indicators for enrollment were constructed directly from the college

transcripts. The transcripts consist of course-specific records, including student ID, college IPEDS ID num-

ber, subject, month and year, credits, letter grade, and standardized numeric grade on a four-point scale.

Course-level records were aggregated up to the student x college x term level to identify the primary school

enrolled in, and then to the student x year level. The final transcript data contains student x year records of

credits attempted, credits earned, grade point average, and several other variables. Individuals were consid-

ered enrolled during academic year  if they attempted at least six course credits (the traditional definition of

part-time enrollment) during both the Fall and Spring semesters of year . The model is a model of college

dropout, so I categorize people according to their number of years of continuous enrollment. Students who
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"stop-out," but eventually return and possibly graduate are grouped with students who dropout permanently

in the same year. From the 1992 NELS surveys I utilize high school grade point average, standardized test

scores, parents’ highest education level, and family income during high school. I convert NELS senior year

test scores into AFQT percentile scores using the cross-walk developed by RAND researchers in Kilburn,

Hanser, and Klerman (1998).

I supplemented the NELS dataset with institutional characteristics obtained from The College Board’s

1992 Annual Survey of Colleges (ASC) and the Department of Education’s 1992 Integrated Postsecondary

Education Data System (IPEDS) Institutional Characteristics survey. Both survey the universe of public and

private two- and four-year colleges in the United States. IPEDS has a higher response rate, but a much

more limited number of data fields. To minimize missing values, I merged the two datasets by IPEDS ID

number. From the IPEDS, I calculated average tuition levels at public two-year and four-year colleges in

each state and merged this data onto the NELS. Latitude/longitude coordinates were then assigned to each

college in IPEDS/ASC and high school in the NELS by zip code from the US Census 1990 Gazetteer Files

(http://www.census.gov/geo/www/gazetteer/gazette.html). From this, I calculated distance from each NELS

high school to the nearest public two-year and four-year college (in miles). I also assigned performance

measures (e.g. graduation rates and transfer rates) of the nearest two-year college to each NELS high

school, but these are not yet used in the analysis. Table A1 describes the main variables used in the analysis

and Table A2 displays summary statistics.

One limitation of the NELS dataset is that respondents are relatively young (approximately 26 years

old) at the time of the final survey year. Since income at this age is a poor indicator of ultimate lifetime

income due to job instability and graduate school attendance, I instead estimate individuals’ expectation of

lifetime income using data from an earlier cohort. This procedure is described in the next section. I restrict

the dataset to on-time high school graduates with complete information on key baseline variables (sex, high

school GPA, parents’ education, AFQT score, distance to nearest colleges) and complete college transcripts

(unless no claim of college attendance). I also exclude residents of Alaska, Hawaii, and the District of

Columbia. After these restrictions the final dataset contains 1773 men.
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Appendix 3. Estimating Conditional Income Expectations

Expectations of lifetime income under different schooling outcomes are a key factor in educational choices.

One limitation of the NELS dataset is that respondents are relatively young (approximately 26 years old)

at the time of the final survey year. Since income at this age may be a poor indicator of ultimate lifetime

income, I do not estimate expectations using individual’s actual labor market outcomes. Instead I estimate

individuals’ expectation of lifetime income using data from a cohort about 12 years earlier, the National Lon-

gitudinal Survey of Youth 1979 (NLSY79). This approach is similar to the "reference group expectations"

referred to by Manski (1991).

The NLSY79 is a Department of Labor longitudinal survey of 12,686 men and women who were 14-22

years old in 1979. They have been surveyed annually or biennially since. Using variables that are common

in both the NLSY79 and NELS (such as high school GPA, parental education, AFQT, ethnicity, urban and

region), I first estimate the parameters of a lifetime income equation on the NLSY79 data. Equation A12

below is estimated using OLS and used to predict counterfactual lifetime income for individuals in the NELS

sample.

() = 0 + 131( = 13) + 141( = 14) + 151( = 15) + 161( ≥ 16) (A12)

+ +  +  +  +  + 

+ +  + 

+ ∗ +  ∗  +  ∗  + 

where  is years of continuous enrollment in college after high school graduation and () is the

present discounted value of lifetime income from age [18 + ( − 12)] to 62. NLSY79 individuals are ages

39 to 47 in 2004, the most recent year for which data is available, so I assume that earnings are constant

from age 39 to 62. The base specification permits the intercept of lifetime income to vary with observable

background and ability variables, but restricts the lifetime income returns to each year of college to be

constant within sex. An alternative specification allows the return to some college (S = 13, 14, or 15) and

a BA (S ≥ 16) to vary with high school gpa, AFQT, and parent’s education. Table AIII provides estimates

of the parameters of the lifetime income equation for both the base and heterogeneous-returns model for

different assumed values of the discount rate. Table AIV presents the estimated lifetime income by sex and
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for different assumptions for the NELS sample.

Appendix 4. Prevalence of Delayed Entry and Stop-out

To simplify analysis, I model college enrollment as an optimal stopping problem. Once individuals enter the

labor market, their educational investment is no longer followed. In practice, individuals may delay college

enrollment or may take time off of college. Table AV presents the fraction of students enrolled during each

year, by the number of years of continuous schooling. In my sample, the fraction of students who return in

the year after their first year of non-enrollment is 17%, 19%, 28%, and 27% for those whose first year of

non-enrollment is year 1 to 4, respectively. Relatively few of these eventually earn a B.A. degree.

Appendix 5. Model Fit

Figures AI to AV extend Figures VI to X to include the model fit for all four models estimated in Table I.

Generally, the preferred specification (Column (4) in Table I) provides the best fit of the data. Figure AVI

examines the fit of the temporal relationship between grades and education decisions by initial pathway.

The figure displays the grade point average in each year by educational outcome (dropout vs completion),

separately for people who begin at two- and four-year colleges. The base model with no learning or unob-

served heterogeneity provides a poor fit of the data, particularly for students beginning at four-year schools.

This model over-predicts grades for those who dropout in the first two years and does not allow grades to

evolve over time for those who persist past the first year. Incorporating unobserved heterogeneity makes

the levels of predictions more accurate, but does not aid in fitting the temporal pattern of grades. Allow-

ing the expectation of future grades to evolve with past grade realizations through learning addresses this.

The preferred model, with three points of unobserved heterogeneity and learning, seems to fit the data best.

There are a few characteristics of the data that are not replicated by the model. These include (1) the inverse

V among two-year entrants who drop out after their third year; and (2) the extent to which average grades

rise over time for those who start at a four-year school and graduate. Future specifications will permit the

distributions of grades between two- and four-year schools to differ, partially addressing these issues.
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Table A I: Variable Descriptions and Sources

Variable Descript ion Source
1. high  school  gpa Cumulative grade point average in high school on 4.0 

scale
NELS.

2. afqt score Armed Forces Qualifying Test percentile score Constructed from NELS test score  variables 
using method deve loped by RAND (see text) .

3 . parent 
education

Years of school a ttended by most educated parent NELS.

4. parent has ba Indicator fo r whether at least one parent earned a  BA 
degree

NELS. Constructed from  pareduc variab le.

5. low income 
family

Indicator fo r whether fam ily income dur ing high schoo l 
was be low $35,000 (approximately the median)

NELS. Constructed from  faminc variab le.

6. urban Attended urban high  school NELS. Constructed from  phsurban variable.
7. region northeast High school in Northeast NELS. NLSY categorization.

8. region 
northcentral

High school in Northcentral NELS. NLSY categorization.

9. region south High school in South NELS. NLSY categorization.
10. reg ion west High school in West NELS. NLSY categorization.
11. white Ethnicity wh ite NELS
12. black Ethnicity black NELS
13. latino Ethnicity latino NELS
14. distance to  
2year

Distance from high schoo l to nearest public two-year 
co llege.

Computed from lat/long coord inates of high 
school (NELS) and each pub lic 2-year  college in 
state (ACS and IPEDS)

15. distance to  
4year

Distance from high schoo l to nearest public four-year 
co llege.

Computed from lat/long coord inates of high 
school (NELS) and all public 4-year college in 
state (ACS and IPEDS)

16. tuition at public 
2year

Average tuition ($1992)  o f pub lic two-year co lleges in 
high school sta te

IPEDS

17. tuition at public 
4year

Average tuition ($1992)  o f pub lic four-year co lleges in 
high school sta te

IPEDS

18. income1 Expected present discounted value of lifetime income if 
do not enter co llege in first year afte r h igh school. 
(thousands of $1992)

Estimated using out-of-sample prediction from 
NLSY (see text).

19. income2 Expected present discounted value of lifetime income if 
exit college after  first year (thousands o f $1992)

Estimated using out-of-sample prediction from 
NLSY (see text).

20. income3 Expected present discounted value of lifetime income if 
exit college after  second year (thousands of $1992)

Estimated using out-of-sample prediction from 
NLSY (see text).

21. income4 Expected present discounted value of lifetime income if 
exit college after  third year (thousands o f $1992)

Estimated using out-of-sample prediction from 
NLSY (see text).

22. income5 Expected present discounted value of lifetime income if 
complete four years of college ( thousands of $1992)

Estimated using out-of-sample prediction from 
NLSY (see text).

23. gpa(t) Grade point average during year (t) of college Computed from NELS college transcripts for all 
courses taken for credit (including failures).

24. enroll(t) Indicator fo r enrollment in college during year  (t) Computed from NELS college transcripts. 
Individual must have attempted at least six units 
of college credit (approx part-time) in each 
semester during year  (t).

25. contenroll Years of continuous enrollment in co llege after high 
school graduation.

Constructed from enroll( t).

26. fouryear(t) Indicator fo r enrollment in four-year col lege dur ing year 
(t)

Constructed from enroll( t) and college type from 
IPEDS. Equals one if enroll (t)  = 1 and enrolled in 
a four-year school in either semester

27. twoyear(t) Indicator fo r enrollment in two-year co llege during year (t) Constructed from enroll( t) and fouryear(t)
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Table A II: Summary Statistics

Variable Mean
Standard 
Deviation Min Max

Baseline Variables
high school gpa 2.71 0.68 0.14 4.00
afqt score 47.7 26.8 1 99
parent education (years) 14.2 2.2 10 19

parent has ba 0.29 0.45 0 1
low income family 0.57 0.50 0 1
urban 0.61 0.49 0 1
region northeast 0.16 0.37 0 1
region northcentral 0.32 0.47 0 1
region south 0.32 0.47 0 1
region west 0.20 0.40 0 1
white 0.74 0.44 0 1
black 0.09 0.28 0 1
latino 0.10 0.30 0 1
distance to 2year 15.4 20.4 0 162
distance to 4year 23.6 26.8 0 234
tuition at public 2year 1496 868 280 3476
tuition at public 4year 2309 771 1251 4265
Educational Outcomes
enroll year 1 0.55 0.50 0 1
         year 2 0.53 0.50 0 1
         year 3 0.46 0.50 0 1
         year 4 0.42 0.49 0 1
start a t 2year 0.15 0.36 0 1
start a t 4year 0.40 0.49 0 1
gpa    year  1 2.42 0.86 0.00 4.00
         year 2 2.48 0.89 0.00 4.00

         year 3 2.63 0.87 0.00 4.00
         year 4 2.75 0.84 0.00 4.00
yrs o f continuous enrollment 13.91 2.13 12 19
don't enroll 0 .45 0.50 0 1
enroll year 1 only 0.10 0.30 0 1
enroll years 1-2 only 0.08 0.27 0 1
enroll years 1-3 only 0.06 0.24 0 1
enroll at least 4 years 0.31 0.46 0 1

Notes: A ll variables have 1773 observations, with  the exception of GPA variables which 
are restr icted to those enrolled in each year
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Table A III: Parameter Estimates from Lifetime Income Equation

d = 5% d =10% d = 5% d =10%
(1) (2) (3) (4)

contenroll = 13 34.64 19.36 95.61 56.34
(22.09) (10.63) (75.61) (36.57)

contenroll = 14 55.54 32.10 126.74 76.04
(24.77) (11.35) (82.67) (39.35)

contenroll = 15 165.89 88.99 238.77 133.56
(37.88) (17.43) (85.66) (40.95)

contenroll > 15 328.13 183.50 -82.26 -6.75
(30.08) (14.17) (154.00) (72.66)

ParentEd 7.65 4.63 13.15 6.96
(8.58) (4.02) (8.22) (3.85)

Black -81.17 -44.76 -80.82 -44.71
(19.14) (8.97) (19.06) (8.95)

Latino 5.93 2.64 1.23 0.71
(23.21) (11.01) (22.81) (10.84)

NorthCentral -45.96 -24.49 -42.48 -22.52
(24.85) (11.74) (24.89) (11.75)

South -56.99 -29.31 -54.99 -28.10
(24.54) (11.61) (24.52) (11.60)

W est -56.01 -29.65 -52.13 -27.85
(25.08) (11.78) (25.12) (11.76)

Urban 32.60 13.06 31.70 12.65
(15.71) (7.51) (15.57) (7.43)

HSgpa 42.78 24.61 74.22 39.36
(41.40) (19.49) (40.77) (19.42)

AFQT 1.52 0.99 3.03 1.64
(1.35) (0.64) (1.34) (0.64)

HSgpa*AFQT 0.25 0.04 -0.19 -0.14
(0.43) (0.20) (0.42) (0.19)

HSgpa*ParentEd -0.55 -0.36 -2.03 -1.14
(3.95) (1.84) (3.81) (1.80)

AFQT*ParentEd -0.03 -0.03 -0.08 -0.05
(0.08) (0.04) (0.09) (0.04)

(s13-s15)*AFQT -0.16 -0.27
(0.67) (0.32)

s16*AFQT 1.91 0.65
(1.33) (0.64)

(s13-s15)*HSgpa 0.47 -3.39
(28.99) (13.57)

s16*HSgpa 46.76 29.88
(47.09) (22.43)

(s13-s15)*ParentEd -4.01 -1.15
(4.91) (2.40)

s16*ParentEd 9.97 3.94
(9.85) (4.52)

Constant 223.52 112.62 134.05 72.50
(93.60) (44.27) (91.50) (43.26)

Observations 1,982 1,982 1,982 1,982
R-squared 0.30 0.33 0.30 0.34

Dependent var iable: PDV of lifetime income post-school
Men in NLSY Sample

Notes: Robust standard errors in parentheses
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Table A IV: Predicted Lifetime Income and Incremental Returns by Years of Continuous Enrollment

d 12 13 14 15 16 13 14 15 16
(1) 5% mean 484 519 540 650 813 35 21 110 162

stdev 90 90 90 90 90 0 0 0 0
(2) 10% mean 245 265 277 334 429 19 13 57 95

stdev 39 39 39 39 39 0 0 0 0
(3) 5% mean 476 508 539 651 754 32 31 112 103

stdev 72 66 66 66 152 11 0 0 94
(4) 10% mean 242 259 279 337 403 18 20 58 67

stdev 33 26 26 26 68 10 0 0 47

Notes: Parameters were estimated using the NLSY.

Men in NELS Sample
Predicted Present Value of L ifetime Income (,000) Predicted Incremental Income Increase (,000)

Table A V: Fraction of Sample that Return to College After Dropping Out

Fraction W ho

Freq 1 2 3 4 5 6 7 Earn BA
12 797 0.00 0.17 0.14 0.14 0.13 0.11 0.10 0.08
13 179 1.00 0.00 0.19 0.23 0.19 0.15 0.09 0.12
14 136 1.00 1.00 0.00 0.28 0.17 0.18 0.10 0.21
15 109 1.00 1.00 1.00 0.00 0.27 0.23 0.12 0.36
16+ 552 1.00 1.00 1.00 1.00 0.49 0.21 0.14 0.87

Years of 
Continuous 

Educ.

Fraction W ho Enroll in Year t
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Figure A I: Actual vs. Simulated Educational Outcomes
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Figure A II: Actual vs. Simulated Outcomes Conditional on Enrollment
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Figure A III: Actual vs. Simulated Educational Outcomes, by Parent Education
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Figure A IV: Actual vs. Simulated Educational Outcomes, by Family Income
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Figure A V: Actual vs. Simulated Graduation Rate by 1st Year GPA
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Figure A VI: Actual vs. Simulated Temporal Relationship between Grades and Educational Outcomes, by
Initial Pathway
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